留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鳜颅部侧线系统的胚后发育

张瑞祺 赵金良 郝月月 宋银都

张瑞祺, 赵金良, 郝月月, 宋银都. 鳜颅部侧线系统的胚后发育[J]. 南方水产科学. doi: 10.12131/20200067
引用本文: 张瑞祺, 赵金良, 郝月月, 宋银都. 鳜颅部侧线系统的胚后发育[J]. 南方水产科学. doi: 10.12131/20200067
Ruiqi ZHANG, Jinliang ZHAO, Yueyue HAO, Yindu SONG. Postembryonic development of cranial lateral line system in Siniperca chuatsi[J]. South China Fisheries Science. doi: 10.12131/20200067
Citation: Ruiqi ZHANG, Jinliang ZHAO, Yueyue HAO, Yindu SONG. Postembryonic development of cranial lateral line system in Siniperca chuatsi[J]. South China Fisheries Science. doi: 10.12131/20200067

鳜颅部侧线系统的胚后发育

doi: 10.12131/20200067
基金项目: 现代农业产业技术体系建设专项资金 (CARS-46)
详细信息
    作者简介:

    张瑞祺 (1988—),男,博士研究生,研究方向为水产基础生物学。E-mail: mading000000@126.com

    通讯作者:

    赵金良 (1969—),男,博士,教授,从事水产养殖研究。E-mail: jlzhao@shou.edu

  • 中图分类号: S 917.4

Postembryonic development of cranial lateral line system in Siniperca chuatsi

  • 摘要: 该研究利用神经丘荧光染色、扫描电镜对鳜 (Siniperca chuatsi) 颅侧线系统的胚后发育过程与结构进行了观察研究。结果显示,鳜颅部侧线系统胚后发育中,受精后第4天 (4 dpf, day post fertilization) 前体管道神经丘 (Presumptive canal neuromast, PCN) 出现,至30 dpf数量趋于稳定,表面神经丘 (Superficial neuromast, SN) 在16 dpf出现,之后在颅顶部大量分布,前鳃盖表面少量分布,下颌未见;颅部侧线管道建立始于19~22 dpf,于37 dpf完成,主要为上眶线、下眶线、下颌线和前鳃盖线,同时耳后线将上下眶线与前鳃盖线连通,颞上线起始于前鳃盖线背侧末端与上眶线旁线向颅顶部延伸;背侧管道神经丘发育速度快于腹侧,颅顶部管道系统相对密集,SN分布较集中。研究表明,鳜颅部侧线系统是其侧线系统的重要组成部分,颅部侧线管道属于简易分支型,颅顶部管道系统相对密集和SN相对集中构成了鳜颅顶部完善的侧线系统结构。
  • 图  1  鳜仔稚鱼期颅部侧线系统发育

    a. 受精后第3天;b. 受精后第4天;c. 受精后第5天,箭头为上眶线前体管道神经丘,箭标为下眶线前体管道神经丘;d. 受精后第6天,箭头为前鳃盖线前体管道神经丘;e. 受精后第7天;f. 受精后第12天;g. 受精后第12天下颌;h. 受精后第16天;i. 受精后第16天颅顶部;j. 受精后第16天下颌;空心点为特定侧线起点,实点为特定侧线终点,箭头为下颌线前体管道神经丘;①. 上眶线;②. 下眶线;③. 下颌线;④. 前鳃盖线;⑤. 耳后线;⑥. 上眶线旁线;⑦. 颞上线

    Figure  1.  Post-embryonic development of cranial lateral line system in larval and juvenile S. chuatsi

    a. 3 dpf; b. 4 dpf; c. 5 dpf, the arrowheads show SO PCN and the arrows show IO PCN; d. 6 dpf, the arrowheads show PR PCN; e. 7 dpf; f. 12 dpf; g. The mandible at 12 dpf; h. 16 dpf; i. Top of the head at 16 dpf; j. The mandible at 16 dpf; the hollow and solid points are the starting and ending points of specific lateral line, respectively, and the arrowheads are the anterior colliculus of mandibular line; ①. SO; ②. IO; ③. MD; ④. PR; ⑤. PO; ⑥. SO side line; ⑦. ST

    图  2  鳜稚幼鱼期颅部侧线系统发育

    a. 受精后第19天,方框区域为正在形成的上眶线;b. 受精后第19天颅顶部;c. 受精后第22天,箭头为正在包围神经丘的新生骨组织;d. 受精后第22天;e. 受精后第30天,方框区域为为前鳃盖线管道内的6~7个管道神经丘;f. 受精后第30天,大部分侧线管道均开始愈合 (箭头);g. 受精后第30天,下眶线上相对的扇形新生组织正在愈合 (箭头);h. 受精后第30天,下颌线部分未愈合管道 (箭头);i. 受精后第37天,颅部侧线管道全部愈合;j. 受精后第44天;k. 受精后第44天鳃盖处

    Figure  2.  Post-embryonic development of cranial lateral line system in juvenile and young S. chuatsi

    a. 19 dpf, the establishment of SO canal is shown in the box; b. The top of the head at 19 dpf; c. 22 dpf, the canal had not closed up yet, and the advancing bone (arrows) can be easily observed around; d. 22 dpf; e. 30 dpf, the cranial lateral line canal was found to be generally formed, and there were 6–7 PCNs around the PR line which are shown in the box; f. 30 dpf, most parts (arrows) of cranial canals were in the process of closing; g. 30 dpf, the relative fan-shaped new tissue on IO line was healing (arrow); h. 30 dpf, the MD canal had been partially enclosed, and there was only part of the unenclosed canal (arrows) near the front of mandible; i. 37 dpf, the main canals of cranial lateral line were enclosed; j. 44 dpf; k. Operculum at 44 dpf

    图  3  鳜神经丘建立过程的超微结构观察

    ①. 神经丘长度;②. 神经丘宽度;③. 感受带长度;④. 感受带宽度

    Figure  3.  Establishment process of neuromast of S. chuatsi under ultrastructural observation (SEM)

    ①. Neuromast length; ②. Neuromast width; ③. Sensory strip length; ④. Sensory strip width

    图  4  鳜颅部侧线系统发育过程示意图

    a. 受精后第3天仔鱼;b. 受精后第16天稚鱼;c. 受精后第20天稚鱼;d. 受精后第37天幼鱼;红点代表管道神经丘;蓝点代表表面神经丘;灰线代表管道侧线系统;灰线白点代表管道孔;①. 受精后第上眶线;②. 受精后第下眶线;③. 受精后第下颌线;④. 前鳃盖线;⑤. 耳后线;⑥. 上眶线旁线;⑦. 颞上线

    Figure  4.  Diagram of development of cranial lateral line system in S. chuatsi

    a. 3 dpf larva; b.16 dpf juvenile; c. 20 dpf juvenile; d. 37 dpf young fish; red dots indicate canal neuromasts; blue dots indicate superficial neuromasts; gray lines indicate canal system; white dots on the gray line indicate the pore on the lateral line canals; ①. SO; ②. IO; ③. MD; ④. PR; ⑤. PO; ⑥. SO side line; ⑦. ST

    图  5  鳜各发育时期管道神经丘与表面神经丘的数量特点

    Figure  5.  Quantitative characteristics of CN/SN of S. chuatsi at different developmental stages

    表  1  鳜不同管道神经丘生长参数线性回归分析

    Table  1.   Regression analysis of neuromast growth parameter of S. chuatsi in different canals

    测量参数 Parameter前体管道神经丘 PCN线性回归 Linear regressionR2FdfP
    神经丘长度 LN SON (n=86) LN=1.556 7×SL+0.642 8 0.882 2 142.471 5 1, 84 <0.001
    ION (n=86) LN=1.222 4×SL+3.060 5 0.816 7 216.380 3 1, 84 <0.001
    MDN (n=73) LN=0.920 2×SL+0.085 1 0.866 0 76.431 1 1, 71 <0.001
    神经丘宽度 WN SON (n=86) WN=0.906 2×SL+2.400 2 0.837 0 134.567 2 1, 84 <0.001
    ION (n=86) WN=0.724 1×SL+4.008 7 0.846 8 83.467 1 1, 84 <0.001
    MDN (n=73) WN=0.550 1×SL+1.698 4 0.760 4 113.347 8 1, 71 <0.001
    神经丘长宽比 LN/WN SON (n=86) LN/WN=0.022 2×SL+1.049 3 0.627 5 712.308 5 1, 84 <0.001
    ION (n=86) LN/WN=0.025 8×SL+1.018 0.753 7 122.321 9 1, 84 <0.001
    MDN (n=73) LN/WN=0.018 1×SL+1.094 0.656 3 17.322 1 1, 71 <0.001
    感受带长度 LS SON (n=86) LS=0.776 2×SL+1.264 1 0.859 1 674.342 1 1, 84 <0.001
    ION (n=86) LS=0.716 8×SL+2.279 4 0.890 1 345.432 1, 84 <0.001
    MDN (n=73) LS=0.536 4×SL+1.712 6 0.894 9 737.904 1, 71 <0.001
    感受带宽度 WS SON (n=86) WS=0.310 8×SL+2.902 3 0.725 3 48.467 6 1, 84 <0.001
    ION (n=86) WS=0.300 4×SL+3.150 6 0.816 3 561.213 3 1, 84 <0.001
    MDN (n=73) WS=0.299 5×SL+2.540 4 0.819 8 412.375 4 1, 71 <0.001
    感受带长宽比 LS/WS SON (n=86) LS/WS=0.033 8×SL+1.103 0 0.709 4 56.321 1, 84 <0.001
    ION (n=86) LS/WS=0.036 5×SL+1.056 9 0.774 5 66.439 1 1, 84 <0.001
    MDN (n=73) LS/WS=0.020 9×SL+0.991 6 0.833 9 231.453 2 1, 71 <0.001
    毛细胞数 HCn SON (n=86) HCn=1.794 0×SL+10.213 0.773 2 103.942 3 1, 84 <0.001
    ION (n=86) HCn=1.376 6×SL+8.374 7 0.747 5 34.572 1 1, 84 <0.001
    MDN (n=73) HCn=0.650 0×SL+10.353 0.724 4 65.348 7 1, 71 <0.001
    注:SL为标准长 (mm);所有数据服从正态分布;P<0.05 Note: SL is standard length in mm. All data were normally distributed.
    下载: 导出CSV

    表  2  鳜不同管道神经丘生长参数增长率的协方差分析

    Table  2.   ANCOVA analysis of neuromast growth parameters of S. chuatsi from different canals

    生长参数 Growth parameter前体管道神经丘和样本数 PCN and sample sizeFdfP
    神经丘长度 LN SON (n=86) vs ION (n=86) 7.347 6 1, 171 <0.01
    神经丘长度 LN SON (n=86) vs MDN (n=73) 234.45 1, 158 <0.001
    神经丘长度 LN ION (n=86) vs MDN (n=73) 163.874 2 1, 158 <0.001
    神经丘宽度 WN SON (n=86) vs ION (n=86) 6.932 2 1, 171 <0.01
    神经丘宽度 WN SON (n=86) vs MDN (n=73) 343.653 4 1, 158 <0.001
    神经丘宽度 WN ION (n=86) vs MDN (n=73) 78.476 2 1, 158 <0.001
    神经丘长宽比 LN/WN SON (n=86) vs ION (n=86) 1.346 6 1, 171 N.S.
    神经丘长宽比 LN/WN SON (n=86) vs MDN (n=73) 7.125 6 1, 158 <0.01
    神经丘长宽比 LN/WN ION (n=86) vs MDN (n=73) 7.273 1, 158 <0.01
    感受带长度 LS SON (n=86) vs ION (n=86) 5.674 3 1, 171 <0.05
    感受带长度 LS SON (n=86) vs MDN (n=73) 177.321 1, 158 <0.001
    感受带长度 LS ION (n=86) vs MDN (n=73) 87.983 3 1, 158 <0.001
    感受带宽度 WS SON (n=86) vs ION (n=86) 2.346 2 1, 171 N.S.
    感受带宽度 WS SON (n=86) vs MDN (n=73) 4.032 8 1, 158 <0.05
    感受带宽度 WS ION (n=86) vs MDN (n=73) 5.432 1 1, 158 <0.05
    感受带长宽比 LS/WS SON (n=86) vs ION (n=86) 7.873 2 1, 171 <0.01
    感受带长宽比 LS/WS SON (n=86) vs MDN (n=73) 119.434 5 1, 158 <0.001
    感受带长宽比 LS/WS ION (n=86) vs MDN (n=73) 347.873 2 1, 158 <0.001
    毛细胞数 HCn SON (n=86) vs ION (n=86) 7.548 9 1, 171 <0.01
    毛细胞数 HCn SON (n=86) vs MDN (n=73) 248.433 1, 158 <0.001
    毛细胞数 HCn ION (n=86) vs MDN (n=73) 276.432 2 1, 158 <0.001
    注:N.S.表示没有显著性,不同神经丘生长趋势的回归分析可同时参阅表1 Note: N.S. indicates no significance. Different neuromast growth slopes are shown in regression analysis. See Table 1.
    下载: 导出CSV

    表  3  特定时期不同神经丘生长参数的单因素方差分析

    Table  3.   ANOVA result of growth parameters of neuromast at specific stage $ \overline { X}{\bf \pm {\bf {SD}}}$

    时期
    Stage
    前体管道神经丘
    PCN
    样本数
    n
    神经丘长度
    Length
    神经丘宽度
    Width
    神经丘长宽比
    LN/WN
    毛细胞数
    HCn
    受精后第9天
    9 dpf
    SON 34 9.1±3.2a 7.3±2.1a 1.2±0.2a 17.2±3.4a
    ION 30 8.2±2.4a 7.1±1.3a 1.1±0.2a 11.2±2.5b
    MDN 24 4.4±1.1b 3.0±0.6c 1.3±0.3a 10.2±1.8b
    STN 0
    SN 0
    受精后第16天
    16 dpf
    SON 42 24.9±3.1a 16.4±2.2a 1.4±0.2a 30.4±4.2a
    ION 45 21.4±2.5b 14.5±1.3a 1.4±0.2a 26.2±7.3b
    MDN 36 12.3±2.3c 8.1±1.8bc 1.4±0.3a 19.6±5.3c
    STN 35 13.8±1.6c 9.4±0.8b 1.2±0.1b 16.4±4.4cd
    SN 35 7.2±0.9d 7.1±1.1c 1.0±0.3b 13.5±2.5d
    受精后第23天
    23 dpf
    SON 45 34.2±4.2a 24.5±2.8a 1.5±0.3a 46.4±7.8a
    ION 44 31.4±2.6b 21.2±3.1a 1.5±0.2a 30.2±7.2b
    MDN 32 16.1±3.1c 13.5±2.9b 1.6±0.2a 23.3±6.3c
    STN 40 29.9±3.5b 19.3±3.2a 1.5±0.3ab 31.0±8.2b
    SN 38 8.0±1.1d 7.2±0.9c 1.1±0.3b 15.2±6.3d
    受精后第30天
    30 dpf
    SON 42 43.2±4.3a 27.1±2.0ab 1.7±0.2a 62.3±12.3a
    ION 35 36.1±3.8b 25.6±1.8b 1.6±0.2a 43.2±10.2c
    MDN 34 27.3±2.9c 16.3±1.5c 1.6±0.3a 29.2±5.3e
    STN 33 38.5±3.1b 29.3±2.2a 1.6±0.1a 57.2±11.5b
    SN 36 11.1±1.1d 10.4±1.0d 1.0±0.2b 17.2±3.1f
    注:数据服从正态分布,同列中具有不同上标字母表示差异显著 (P<0.05) Note: All data conform to normal distribution, and values within the same column with different superscripts are significantly different (P<0.05).
    下载: 导出CSV
  • [1] MONTGOMERY J, BLECKMANN H, COOMBS S. Sensory ecology and neuroethology of the lateral line[M]. New York: Springer, 2014: 121-145.
    [2] BUTLER J M, MARUSKA K P. The mechanosensory lateral line is used to assess opponents and mediate aggressive behaviors during territorial interactions in an African cichlid fish[J]. J Exp Biol, 2015, 218(20): 3284-3294. doi:  10.1242/jeb.125948
    [3] DOW E, JACOBO A, HOSSAIN S, et al. Connectomics of the zebrafish's lateral-line neuromast reveals wiring and miswiring in a simple microcircuit[J]. eLife, 2018, 7: e33988. doi:  10.7554/eLife.33988
    [4] BROWN E E A, MEGELA S A, FINE M L. Variability of rheotaxis behaviors in larval bullfrogs highlights species diversity in lateral line function[J]. PLoS One, 2016, 11(11): e0166989. doi:  10.1371/journal.pone.0166989
    [5] WEBB J F. Morphological diversity, development, and evolution of the mechanosensory lateral line system[M]. New York: Springer, 2014: 17-72.
    [6] DENTON E J, GREY J A. Some observations on the forces acting on neuroinasts in fish lateral line canals[M]. New York: Springer, 1989: 229-246.
    [7] MÜNZ H. Functional organization of the lateral line periphery[M]. New York: Springer, 1989: 285-297.
    [8] MARTA L O, GEMA V, YAN X, et al. Hair cell identity establishes labeled lines of directional mechanosensation[J]. PLoS Biol, 2018, 16(7): e2004404. doi:  10.1371/journal.pbio.2004404
    [9] PICHLER P, LAGNADO L. Motor behavior selectively inhibits hair cells activated by forward motion in the lateral line of zebrafish[J]. Curr Biol, 2020, 30(1): 150-157. doi:  10.1016/j.cub.2019.11.020
    [10] MARSHALL N J. Vision and sensory physiology the lateral line systems of three deep-sea fish[J]. J Fish Biol, 1996, 49(sA): 239-258. doi:  10.1111/j.1095-8649.1996.tb06079.x
    [11] GIBBS M A. Lateral line receptors: where do they come from developmentally and where is our research going?[J]. Brain Behav Evolut, 2004, 64(3): 163-181. doi:  10.1159/000079745
    [12] YOUNG A, KOCHENKOV V, MCINTYRE J K, et al. Urban stormwater runoff negatively impacts lateral line development in larval zebrafish and salmon embryos[J]. Sci Rep, 2018, 8(1): 2830-2844. doi:  10.1038/s41598-018-21209-z
    [13] LIANG X F, OKU H, OGATA H Y, et al. Weaning Chinese perch Siniperca chuatsi (Basilewsky) onto artificial diets based upon its specific sensory modality in feeding[J]. Aquacult Res, 2015, 32(s1): 76-82.
    [14] 孙海林, 孙成飞, 董浚键, 等. 翘嘴鳜转录组测序及SSR新标记的开发与应用[J]. 基因组学与应用生物学, 2019(10): 4413-4421.
    [15] 魏磊, 朱书琴, 刘伟, 等. 鳜回交子代与亲本子代间体型和体斑特征比较[J]. 南方水产科学, 2020, 16(2): 1-7. doi:  10.12131/20190219
    [16] 刘伟, 赵金良, 魏磊, 等. 鳜早期色素发育和色彩图案的形成[J]. 动物学杂志, 2019(2): 236-244.
    [17] 梁旭方. 鳜鱼视觉特性及其对捕食习性适应的研究: Ⅱ. 视网膜结构特性[J]. 水生生物学报, 1994, 18(4): 376-377. doi:  10.3321/j.issn:1000-3207.1994.04.009
    [18] 梁旭方. 鳜鱼视觉特性及其对捕食习性适应的研究: Ⅲ. 视觉对猎物运动和形状的反应[J]. 水生生物学报, 1995, 19(1): 70-75.
    [19] 郝月月, 赵金良, 张瑞祺, 等. 鳜早期味蕾发育的组织学特征[J]. 动物学杂志, 2018, 53(5): 83-90.
    [20] 梁旭方. 鳜捕食行为的研究[J]. 海洋与湖沼, 1995, 26(5): 119-125.
    [21] 魏开建, 张海明. 鳜鱼视网膜发育的组织学研究[J]. 华中农业大学学报, 1996, 15(3): 263-269.
    [22] ZHANG R Q, ZHAO J L, ZHAO Y, et al. Retinal development in mandarinfish Siniperca chuatsi and morphological analysis of the photoreceptor layer[J]. J Fish Biol, 2019, 95(3): 903-917.
    [23] 梁旭方. 鳜侧线管结构和行为反应特性及其对捕食习性的适应[J]. 海洋与湖沼, 1996, 27(5): 457-462. doi:  10.3321/j.issn:0029-814X.1996.05.001
    [24] 李家乐. 池塘养鱼学[M]. 北京: 中国农业出版社, 2010: 93-170.
    [25] 田文斐, 钟俊生, 钱叶洲. 鳜仔鱼视网膜及口腔齿的发育对摄食的适应[J]. 上海海洋大学学报, 2012, 21(2): 190-198.
    [26] WEBB J F, SHIREY J E. Postembryonic development of the cranial lateral line canals and neuromasts in zebrafish[J]. Dev Dynam, 2003, 228(3): 370-385. doi:  10.1002/dvdy.10385
    [27] WEBB J F. Gross morphology and evolution of the mechanosensory lateral line system in teleost fishes[J]. Brain Behav Evolut, 1989, 33(1): 34-53. doi:  10.1159/000115896
    [28] WEBB J F. Developmental constraints and evolution of the lateral line system in teleost fishes [M]. New York: Springer, 1989: 79-97.
    [29] WEBB J F. Neuromast morphology and lateral line trunk canal ontogeny in two species of cichlids: an SEM study[J]. J Morphol, 1989, 202(1): 53-68. doi:  10.1002/jmor.1052020105
    [30] SATO M, ASAOKA R, NAKAE M, et al. The lateral line system and its innervation in Lateolabrax japonicus (Percoideiincertae sedis) and two apogonids (Apogonidae), with special reference to superficial neuromasts (Teleostei: Percomorpha)[J]. Ichthyol Res, 2017, 64(3): 308-330. doi:  10.1007/s10228-016-0568-x
    [31] SATO M, NAKAE M, SASAKI K. Convergent evolution of the lateral line system in Apogonidae (Teleostei: Percomorpha) determined from innervation[J]. J Morphol, 2019, 280(1): 1026-1045.
    [32] SCHWALBE M A B, BASSETT D K, WEBB J F. Feeding in the dark: lateral-line-mediated prey detection in the peacock cichlid Aulonocara stuartgranti[J]. J Exp Biol, 2012, 215(12): 2060-2071. doi:  10.1242/jeb.065920
    [33] CARPENTER K E, BERRA T M, JR J M H. Swim bladder and posterior lateral line nerve of the nurseryfish, Kurtus gulliveri (Perciformes: Kurtidae)[J]. J Morphol, 2004, 260(2): 193-200. doi:  10.1002/jmor.10184
    [34] MOTOMURA H, IWATSUKI Y. Review of Polydactylus species (Perciformes: Polynemidae) characterized by a large black anterior lateral line spot, with descriptions of two new species[J]. Ichthyol Res, 2001, 48(4): 337-354. doi:  10.1007/s10228-001-8157-y
    [35] WEBB J F. Laterophysic connection: a unique link between the swimbladder and the lateral line system in Chaetodon (Perciformes: Chaetodontidae)[J]. Copeia, 1998(4): 1032-1036.
    [36] BECKER E A, BIRD N C, WEBB J F. Post-embryonic development of canal and superficial neuromasts and the generation of two cranial lateral line phenotypes[J]. J Morphol, 2016, 227(10): 1273-1291.
    [37] WINDSOR S P, MCHENRY M J. The influence of viscous hydrodynamics on the fish lateral-line system[J]. Integr Comp Biol, 2009, 49(6): 691-701. doi:  10.1093/icb/icp084
    [38] YOSHIZAWA M, JEFFERY W R, van NETTEN S M, et al. The sensitivity of lateral line receptors and their role in the behavior of Mexican blind cavefish (Astyanax mexicanus)[J]. J Exp Biol, 2014, 217(6): 886-895. doi:  10.1242/jeb.094599
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  1086
  • HTML全文浏览量:  499
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-07
  • 修回日期:  2020-05-19
  • 网络出版日期:  2020-11-19

目录

    /

    返回文章
    返回