留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

停加红糖对凡纳滨对虾生物絮团养殖系统水质和氮收支的影响

韩天骄 徐武杰 徐煜 文国樑 胡晓娟 苏浩昌 曹煜成

韩天骄, 徐武杰, 徐煜, 文国樑, 胡晓娟, 苏浩昌, 曹煜成. 停加红糖对凡纳滨对虾生物絮团养殖系统水质和氮收支的影响[J]. 南方水产科学, 2020, 16(6): 81-88. doi: 10.12131/20200052
引用本文: 韩天骄, 徐武杰, 徐煜, 文国樑, 胡晓娟, 苏浩昌, 曹煜成. 停加红糖对凡纳滨对虾生物絮团养殖系统水质和氮收支的影响[J]. 南方水产科学, 2020, 16(6): 81-88. doi: 10.12131/20200052
Tianjiao HAN, Wujie XU, Yu XU, Guoliang WEN, Xiaojuan HU, Haochang SU, Yucheng CAO. Effect of stopping adding brown sugar on water quality and nitrogen budget in biofloc systems cultured with Litopenaeus vannamei[J]. South China Fisheries Science, 2020, 16(6): 81-88. doi: 10.12131/20200052
Citation: Tianjiao HAN, Wujie XU, Yu XU, Guoliang WEN, Xiaojuan HU, Haochang SU, Yucheng CAO. Effect of stopping adding brown sugar on water quality and nitrogen budget in biofloc systems cultured with Litopenaeus vannamei[J]. South China Fisheries Science, 2020, 16(6): 81-88. doi: 10.12131/20200052

停加红糖对凡纳滨对虾生物絮团养殖系统水质和氮收支的影响

doi: 10.12131/20200052
基金项目: 中国水产科学研究院基本科研业务费专项资金 (2020TD54);国家重点研发计划“蓝色粮仓科技创新”专项 (2019YFD0900402);现代农业产业技术体系建设专项资金 (CARS-48);广东省促进经济发展专项 (现代渔业发展) (粤农2019B12)
详细信息
    作者简介:

    韩天骄 (1994—),女,硕士研究生,研究方向为对虾健康养殖和养殖水质调控。E-mail: htjz18095136080@163.com

    通讯作者:

    曹煜成 (1979—),男,博士,副研究员,从事水产健康养殖和养殖生态环境调控。E-mail: cyc_715@163.com

  • 中图分类号: S 968.22

Effect of stopping adding brown sugar on water quality and nitrogen budget in biofloc systems cultured with Litopenaeus vannamei

  • 摘要: 试验以生物絮团技术 (Biofloc technology, BFT) 养殖30 d的凡纳滨对虾 (Litopenaeus vannamei) 及其池塘水体为基础,设定红糖持续添加组 (BS-组) 和不添加红糖组 (NBS-组),探究在稳定的凡纳滨对虾生物絮团 (Bioflic, BF) 养殖系统中,适时停止添加红糖对养殖水质和氮收支的影响。在28 d内监测总氨氮 (TAN)、亚硝酸盐氮 (NO2 -N) 等,并测定试验前后虾体和投喂饲料的总氮 (TN)。结果显示,BS组和NBS组的TAN、NO2 -N均处于较低水平,试验期间两组TAN质量浓度维持在0.02~0.06 mg·L−1,试验第7天后两组NO2 -N质量浓度在1.00 mg·L−1以下。研究发现:1) 氮收入主要为饲料,占比78.8%;氮输出主要为水体TN,BS组和NBS组的水体TN分别占45.06%和52.55%;2) 收获虾体的氮输出分别占21.49%和25.43%,两组的饲料氮利用效率分别为18.14%和23.14%。可见,在稳定的BF养殖系统中适时停止添加红糖,对水体微生物去除TAN和NO2 -N的效果不会产生影响。
  • 图  1  养殖水体中总氨氮、亚硝酸盐氮、硝酸盐氮、总无机氮的质量浓度变化

    Figure  1.  Concentration changes of TAN, NO2 -N, NO3 -N and TIN in water

    图  2  养殖水体中生物絮团沉降量、总碱度和pH的变化

    Figure  2.  Variation of biofloc volume, total alkalinity and pH in water

    表  1  养殖系统中氮收支状况

    Table  1.   Nitrogen budget of aquaculture system g (%)

    项目
    Item
    BS组氮输入
    N input of BS
    NBS组氮输入
    N input of NBS
    BS组氮输出
    N output of BS
    NBS组氮输出
    N output of NBS
    水体 Water 13.97±0.37 (14.00) 13.97±0.37 (14.00) 44.96±3.46a (45.06) 52.43±0.53b (52.55)
    虾体 Shrimp 7.18±0.00 (7.20) 7.18±0.00 (7.20) 21.44±4.74a (21.49) 25.37±0.72a (25.43)
    饲料 Feed 78.62±0.00 (78.80) 78.62±0.00 (78.80)
    其他 Other 33.37±3.43a (33.44) 21.97±1.23b (22.02)
    合计 Total 99.77±0.37 (100.00) 99.77±0.37 (100.00) 99.77±0.00a (100.00) 99.77±0.00a (100.00)
    注:数据以氮的质量 (g) 平均值±标准差或氮质量分数 (%) 表示,n=3,同行不同字母的两项间差异显著 (P<0.05),下同 Note: The data are presented as $ \overline X \pm {\rm{SD}} $ of nitrogen mass (g) or its mass percentage of nitrogen (%); number of samples is three; the values within the same row with different superscripts are significant (P<0.05); the same below
    下载: 导出CSV

    表  2  养殖水体中氮输出状况

    Table  2.   Nitrogen output in water g (%)

    项目
    Item
    BS组水体氮输出
    TN output of water in BS
    NBS组水体氮输出
    TN output of water in NBS
    总氮 TN
     悬浮颗粒物氮 SSN 3.28±0.43a (3.29) 2.53±0.48a (2.54)
     可溶性总氮 TDN 41.68±3.19a (41.78) 49.89±0.59a (50.01)
    可溶性总氮 TDN
     总氨氮 TAN 0.04±0.01a (0.04) 0.03±0.00b (0.03)
     亚硝酸盐氮 NO2 -N 0.28±0.02a (0.28) 0.16±0.02b (0.16)
     硝酸盐氮 NO3 -N 28.15±0.66a (28.22) 38.17±1.48b (38.26)
     其他 Others 13.23±1.46a (11.26) 11.43±1.19a (11.45)
    下载: 导出CSV

    表  3  凡纳滨对虾生长性能及饲料利用

    Table  3.   Growth performance and feed utilization of L. vannamei

    指标
    Index
    BS组
    BS group
    NBS组
    NBS group
    成活率 Survival rate/% 43.43±12.93a 47.62±0.66a
    终末体质量 Final body mass/g 9.86±0.48a 10.60±0.49a
    增重率 Weight gain/% 8.43±0.78a 9.17±0.49a
    饲料系数 Feed conversion ratio 1.68±0.39a 1.36±0.05a
    饲料氮利用效率 Feed N utilization efficiency/% 18.14±7.39a 23.14±1.12a
    下载: 导出CSV
  • [1] CRAB R, DEFOIRDT T, BOSSIER P, et al. Biofloc technology in aquaculture: beneficial effects and future challenges[J]. Aquaculture, 2012, 356: 351-356.
    [2] RAY A J, LEWIS B L, BROWDY C L, et al. Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant-based feed in minimal-exchange, superintensive culture systems[J]. Aquaculture, 2010, 299(1/2/3/4): 89-98.
    [3] BRIGGS M R P, FVNGE-SMITH S J. A nutrient budget of some intensive marine shrimp ponds in Thailand[J]. Aquacult Res, 1994, 25(8): 789-811. doi:  10.1111/j.1365-2109.1994.tb00744.x
    [4] BOYD C E. Better management practices for marine shrimp aquaculture[M]. New Jersey: Wiley-Blackwell 2008: 227-259.
    [5] READ P, FERNANDES T. Management of environmental impacts of marine aquaculture in Europe[J]. Aquaculture, 2003, 226(1): 139-163.
    [6] FUNGE-SMITH S J, BRIGGS M R P. Nutrient budgets in intensive shrimp ponds: implications for sustainability[J]. Aquaculture, 1998, 164(1): 117-133.
    [7] 邓吉朋, 黄建华, 江世贵, 等. 生物絮团在斑节对虾养殖系统中的形成条件及作用效果[J]. 南方水产科学, 2014, 10(3): 29-37. doi:  10.3969/j.issn.2095-0780.2014.03.005
    [8] 田道贺, 桂福坤, 李华, 等. 硝化型生物絮团的驯化培养[J]. 南方水产科学, 2019, 15(4): 39-45.
    [9] AVNIMELECH Y. Carbon/nitrogen ratio as a control element in aquaculture systems[J]. Aquaculture, 1999, 176(3): 227-235.
    [10] XU W J, MORRIS T C, SAMOCHA T M. Effects of two commercial feeds for semi-intensive and hyper-intensive culture and four C/N ratios on water quality and performance of Litopenaeus vannamei juveniles at high density in biofloc-based, zero-exchange outdoor tanks[J]. Aquaculture, 2018, 490: 194-202. doi:  10.1016/j.aquaculture.2018.02.028
    [11] WEI Y F, WANG A L, LIAO S A. Effect of different carbon sources on microbial community structure and composition of ex-situ biofloc formation[J]. Aquaculture, 2020. DOI: https://doi.org/10.1016/j.aquaculture.2019.734492.
    [12] AZIM M, LITTLE D, BRON J E. Microbial protein production in activated suspension tanks manipulating C: N ratio in feed and the implications for fish culture[J]. Bioresour Technol, 2008, 99(9): 3590-3599. doi:  10.1016/j.biortech.2007.07.063
    [13] SEARS K, ALLEMAN J, BARNARD J, et al. Density and activity characterization of activated sludge flocs[J]. J Environ Eng-ASCE, 2006, 132(10): 1235-1242. doi:  10.1061/(ASCE)0733-9372(2006)132:10(1235)
    [14] AVNIMELECH Y. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds[J]. Aquaculture, 2007, 264(1): 140-147.
    [15] NOOTONG K, PRASERT P, POWTONGSOOK S. Effects of organic carbon addition in controlling inorganic nitrogen concentrations in a biofloc system[J]. J World Aquacult Soc, 2011, 42(3): 339-346. doi:  10.1111/j.1749-7345.2011.00472.x
    [16] CRAB R, AVNIMELECH Y, DEFOIRDT T, et al. Nitrogen removal techniques in aquaculture for a sustainable production[J]. Aquaculture, 2007, 270(1): 1-14.
    [17] EBELING J M, TIMMONS M B, BISOGNI J J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems[J]. Aquaculture, 2006, 257(1): 346-358.
    [18] HARGREAVES J A. Photosynthetic suspended-growth systems in aquaculture[J]. Aquacult Eng, 2006, 34(3): 344-363. doi:  10.1016/j.aquaeng.2005.08.009
    [19] YORAM A, KOCHBA M. Evaluation of nitrogen uptake and excretion by tilapia in bio floc tanks, using 1N tracing[J]. Aquaculture, 2009, 287(1/2): 163-168.
    [20] 张哲, 杨章武, 葛辉, 等. 不同碳源对凡纳滨对虾育苗标粗水体生物絮团的结构、营养成分、细菌群落及其水质的影响[J]. 水产学报, 2019, 43(3): 639-649.
    [21] 刘克明, 尤宏争, 马林, 等. 不同碳源培养生物絮团对南美白对虾养殖影响试验[J]. 河北渔业, 2019(4): 32-34.
    [22] GHYOOT W, VANDAELE S, VERSTRAETE W. Nitrogen removal from sludge reject water with a membrane-assisted bioreactor[J]. Water Res, 1999, 33(1): 23-32. doi:  10.1016/S0043-1354(98)00190-0
    [23] XU W J, MORRIS T C, SAMOCHA T M. Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system[J]. Aquaculture, 2016, 453: 169-175. doi:  10.1016/j.aquaculture.2015.11.021
    [24] XU W J, PAN L Q. Enhancement of immune response and antioxidant status of Litopenaeus vannamei juvenile in biofloc-based culture tanks manipulating high C/N ratio of feed input[J]. Aquaculture, 2013, 412: 117-124.
    [25] KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network[J]. Nat Rev Microbiol, 2018, 16(5): 263-276. doi:  10.1038/nrmicro.2018.9
    [26] XU W J, XU Y, SU H C, et al. Effects of feeding frequency on growth, feed utilization, digestive enzyme activity and body composition of Litopenaeus vannamei in biofloc-based zero-exchange intensive systems[J]. Aquaculture, 2020. DOI: https://doi.org/10.1016/j.aquaculture.2020.735079.
    [27] FRíAS-ESPERICUETA M G, HARFUSH-MELENDEZ M, OSUNA-LÓPEZ J I, et al. Acute toxicity of ammonia to juvenile shrimp Penaeus vannamei Boone[J]. Bull Environ Contam Toxicol, 1999, 62(5): 646-652. doi:  10.1007/s001289900923
    [28] LIN Y C, CHEN J C. Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels[J]. Aquaculture, 2003, 224(1/2/3/4): 193-201.
    [29] 孙舰军, 丁美丽. 氨氮对中国对虾抗病力的影响[J]. 海洋与湖沼, 1999, 30(3): 267-272. doi:  10.3321/j.issn:0029-814X.1999.03.007
    [30] VALENCIA-CASTAÑEDA G, FRÍAS-ESPERICUETA M G, VANEGAS-PÉREZ R C, et al. Toxicity of ammonia, nitrite and nitrate to Litopenaeus vannamei juveniles in low-salinity water in single and ternary exposure experiments and their environmental implications[J]. Environ Toxicol Pharmacol, 2019, 70: 103193. doi:  10.1016/j.etap.2019.05.002
    [31] HARGREAVES J A. Biofloc production systems for aquacul-ture[M]. Mississippi: Southern Regional Aquacultue Center, 2013: 1-11.
    [32] BOYD C E, TUCKER C S. Handbook for aquaculture water quality[M]. Auburn: Craftmaster Printers, 2014: 439.
    [33] BOYD C E, TUCKER C S, SOMRIDHIVEJ B. Alkalinity and hardness: critical but elusive concepts in aquaculture[J]. J World Aquacult Soc, 2016, 47(1): 6-41. doi:  10.1111/jwas.12241
    [34] SCHVEITZER R, ARANTES R, COSTODIO P F S, et al. Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange[J]. Aquacult Eng, 2013, 56: 59-70. doi:  10.1016/j.aquaeng.2013.04.006
    [35] XU W J, PAN L Q. Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed[J]. Aquaculture, 2012, 356/357: 147-152. doi:  10.1016/j.aquaculture.2012.05.022
    [36] 臧维玲, 杨明, 戴习林, 等. 凡纳滨对虾室内封闭式养殖水质变化与氮收支的试验研究[J]. 农业环境科学学报, 2009, 28(5): 1019-1024. doi:  10.3321/j.issn:1672-2043.2009.05.028
    [37] 游奎. 对虾工程化养殖系统重要元素及能量收支[D]. 青岛: 中国科学院研究生院 (海洋研究所), 2005: 75-87.
    [38] MICHAUD L, BLANCHETON J P, BRUNI V, et al. Effect of particulate organic carbon on heterotrophic bacterial populations and nitrification efficiency in biological filters[J]. Aquacult Eng, 2006, 34(3): 224-233. doi:  10.1016/j.aquaeng.2005.07.005
    [39] BURFORD M A, THOMPSON P J, MCINTOSH R P, et al. Nutrient and microbial dynamics in high-intensity, zero-exchange shrimp ponds in Belize[J]. Aquaculture, 2003, 219(1): 393-411.
    [40] BURFORD M A, THOMPSON P J, MCINTOSH R P, et al. The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system[J]. Aquaculture, 2004, 232(1): 525-537.
    [41] LUO G Z, AVNIMELECH Y, PAN Y F, et al. Inorganic nitrogen dynamics in sequencing batch reactors using biofloc technology to treat aquaculture sludge[J]. Aquacult Eng, 2013, 52: 73-79. doi:  10.1016/j.aquaeng.2012.09.003
    [42] LUO G Z, XU J X, MENG H Y. Nitrate accumulation in biofloc aquaculture systems[J]. Aquaculture, 2020. DOI: https: //doi.org/ 10.1016/ j. aquaculture. 2019. 734675.
    [43] WUCHTER C, ABBAS B, COOLEN M J, et al. Archaeal nitrification in the ocean[J]. Proc Natl Acad Sci USA, 2006, 103(33): 12317-12322. doi:  10.1073/pnas.0600756103
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  1223
  • HTML全文浏览量:  573
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-21
  • 修回日期:  2020-05-27
  • 网络出版日期:  2020-11-18
  • 刊出日期:  2020-12-04

目录

    /

    返回文章
    返回