留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

β-1,3-葡聚糖对低盐度凡纳滨对虾血液代谢物和免疫的影响

赵红霞 胡俊茹 黄燕华 陈冰 曹俊明

引用本文:
Citation:

β-1,3-葡聚糖对低盐度凡纳滨对虾血液代谢物和免疫的影响

    作者简介: 赵红霞(1976—),女,博士,研究员,从事水产动物营养与饲料研究。E-mail: zhaohongxia8866@163.com;
  • 中图分类号: S 963.3

Effect of dietary β-glucan on blood metabolites and immunity of Litopenaeus vannamei at low salinitys

  • CLC number: S 963.3

  • 摘要: 为研究长期投喂β-1,3-葡聚糖对低盐度 (5) 养殖凡纳滨对虾 (Litopenaeus vannamei) 血液代谢物和肌肉免疫相关酶活性的影响,以初始体质量为 (0.65±0.01) g的凡纳滨对虾为研究对象,分别投喂添加0、250、500和1 000 mg·kg−1 β-1,3-葡聚糖的4种等氮等脂试验饲料,试验期84 d。结果显示,凡纳滨对虾血清乳酸盐和肌肉溶菌酶活性最高值出现在摄食后的第14天,总蛋白、甘油三酯、胆固醇、葡萄糖含量最高值出现在第42天,超氧化物歧化酶、过氧化氢酶、抗超氧阴离子水平的最高值出现在第56天。与对照组相比,饲料中添加250 mg·kg−1 β-1,3-葡聚糖显著提高了凡纳滨对虾血清甘油三酯、胆固醇、葡萄糖、乳酸盐含量和超氧化物歧化酶活性 (P<0.05);500 mg·kg−1 β-1,3-葡聚糖显著提高了其血清总蛋白、抗超氧阴离子水平 (P<0.05),250或500 mg·kg−1 β-1,3-葡聚糖可显著增强过氧化氢酶、溶菌酶活性 (P<0.05)。饲料中添加250或500 mg·kg−1 β-1,3-葡聚糖14、42或56 d,可显著提高低盐度养殖凡纳滨对虾营养物质代谢和非特异性免疫功能。
  • 表 1  基础饲料组成及营养水平 (风干质量)

    Table 1.  Composition and nutrient levels of the basal diet (dry matter) %

    原料
    Ingredient
    含量
    Content
    原料
    Ingredient
    含量
    Content
    鱼粉
    Fish meal
    30.0 α-纤维素 α-cellulose 0.5
    大豆浓缩蛋白 Soy protein concentrate 30.0 大豆卵磷脂 Soybean lecithin (50%) 1.5
    玉米淀粉 Corn starch 28.0
    鱼油 Fish oil 5.0 营养水平 Nutrient levels
    氯化胆碱 Choline chloride (50%) 1.0  粗蛋白质 Crude Protein 39.1
    维生素预混料 Vitamin premix1) 2.0  粗脂肪 Crude lipid 11.2
    矿物质预混料 Mineral premix2) 0.5  灰分 Ash 13.8
    磷酸二氢钙 Ca(H2PO4)2 1.5  水分 Moisture 8.7
    注:1) 维生素预混料为每千克饲料提供:维生素A 60.0 mg;维生素D 5 000 IU;维生素E 99.0 mg;维生素K 5.0 mg;维生素B1 50.0 mg;维生素B2 40.0 mg;维生素B6 100.0 mg;维生素B12 0.1 mg;泛酸钙 calcium pantothenate 120.0 mg;烟酸 niacin 200.0 mg;生物素 biotin 1.0 mg;肌醇 inositol 300. 0 mg;叶酸 folic acid 10.0 mg;2) 矿物质预混料为每千克饲料提供:铁 12 mg;铜 25 mg;锌 32 mg;锰 20 mg;硒 0.05 mg;碘 0.1 mg;钴5 mg;镁 0.06 mg;钾 40 mg Note: 1) Vitamin premix composition (mg·kg−1 feed): VA 60.0 mg; VD 5 000 IU; VE 99.0 mg; VK 5.0 mg; VB1 50.0 mg; VB2 40.0 mg; VB6 100.0 mg; VB12 0.1 mg; calcium pantothenate 120.0 mg; niacin 200.0 mg; biotin 1.0 mg; inositol 300. 0 mg; folic acid 10.0 mg; wheat flour was used as the carrier; 2) Mineral premix composition (mg·kg−1 feed): Fe 12 mg; Cu 25 mg; Zn 32 mg; Mn 20 mg; Se 0. 05 mg; I 0.1 mg; Co 5 mg; Mg 0.06 mg; K 40 mg
    下载: 导出CSV

    表 2  β-1,3-葡聚糖对凡纳滨对虾血清总蛋白质量浓度的影响

    Table 2.  Effect of dietary β-1,3-glucan on TP content in serum of L. vannamei mg·mL−1

    天数
    Day
    β-1,3-葡聚糖水平 β-1,3-glucan level
    0250 mg·kg−1500 mg·kg−11 000 mg·kg−1
    0 65.81±1.73A 65.81±1.73A 65.81±1.73A 65.81±1.73A
    14 66.35±1.45aA 71.83±2.73abA 80.50±5.30bAB 66.3±3.12aAB
    28 70.90±3.25abA 73.56±4.55abA 77.06±2.51bA 63.83±1.64aA
    42 70.67±3.85aA 77.47±4.58abAB 93.05±1.85bB 69.50±1.50aAB
    56 77.06±1.56AB 76.56±3.75AB 75.40±4.35A 73.90±2.26B
    70 77.96±5.74AB 71.10±6.25A 80.93±3.39AB 73.30±4.23B
    84 85.13±4.94B 88.33±1.73B 79.53±5.17AB 85.07±3.00C
    双因素方差分析PP-value of Two-Way ANOVA
    β-1,3-葡聚糖 β-1,3-glucan 0.002
    试验天数 Experimental days <0.001
    β-1,3-葡聚糖×试验天数 β-1,3-glucan×Experimental days 0.042
    注:数据上标小写字母表示同一时间不同组间的显著性差异;大写字母表示同一组不同时间的显著性差异 (P<0.05),后表同此 Note: Note: The lowercase letters represent significant differences between groups at the same time; capital letters on the data represent significant differences in different periods of the same group (P<0.05). The same case in the following tables
    下载: 导出CSV

    表 3  β-1,3-葡聚糖对凡纳滨对虾血清胆固醇浓度的影响

    Table 3.  Effect of dietary β-1,3-glucan on cholesterol content in serum of L. vannamei mmol·L−1

    天数
    Day
    β-1,3-葡聚糖水平 β-1,3-glucan level
    0250 mg·kg−1500 mg·kg−11 000 mg·kg−1
    0 1.15±0.08B 1.15±0.08BC 1.15±0.08C 1.15±0.08B
    14 1.09±0.18B 0.99±0.03AB 1.02±0.15C 1.02±0.04B
    28 0.57±0.01A 0.72±0.09A 0.58±0.02A 0.60±0.02A
    42 0.78±0.07aA 1.36±0.17bC 0.88±0.04aBC 0.98±0.06aB
    56 0.68±0.04aA 1.29±0.12bBC 0.70±0.07aAB 0.98±0.15abB
    70 0.67±0.01aA 0.82±0.03cA 0.80±0.04bcABC 0.77±0.05abcAB
    84 0.74±0.02aA 0.97±0.09bAB 0.66±0.02aAB 0.81±0.03abAB
    双因素方差分析PP-value of Two-Way ANOVA
    β-1,3-葡聚糖 β-1,3-glucan <0.001
    试验天数 Experimental days <0.001
    β-1,3-葡聚糖×试验天数 β-1,3-glucan×Experimental days 0.007
    下载: 导出CSV

    表 4  β-1,3-葡聚糖对凡纳滨对虾血清甘油三酯浓度的影响

    Table 4.  Effect of dietary β-1,3-glucan on triglycerides content in serum of L. vannamei mmol·L−1

    天数
    Day
    β-1,3-葡聚糖水平 β-1,3-glucan level
    0250 mg·kg−1500 mg·kg−11 000 mg·kg−1
    0 1.32±0.09B 1.32±0.09B 1.32±0.09C 1.32±0.09C
    14 0.97±0.12AB 1.07±0.08B 1.16±0.21C 0.77±0.13BC
    28 0.24±0.02A 0.41±0.05A 0.36±0.03A 0.33±0.01A
    42 0.65±0.11aAB 1.74±0.14cC 0.96±0.05abBC 1.06±0.13bC
    56 0.50±0.09aA 1.86±0.39bC 0.67±0.15aAB 1.11±0.10aC
    70 0.38±0.01aA 0.65±0.05cAB 0.52±0.03abcA 0.56±0.08bcAB
    84 0.45±0.02aA 0.69±0.15bC 0.35±0.03aA 0.52±0.02abAB
    双因素方差分析PP-value of Two-Way ANOVA
    β-1,3-葡聚糖 β-1,3-glucan <0.001
    试验天数 Experimental days <0.001
    β-1,3-葡聚糖×试验天数 β-1,3-glucan×Experimental days <0.001
    下载: 导出CSV

    表 5  β-1,3-葡聚糖对凡纳滨对虾血清葡萄糖浓度的影响

    Table 5.  Effect of dietary β-1,3–glucan on glucose content in serum of L. vannamei mmol·L−1

    天数
    Day
    β-1,3-葡聚糖水平 β-1,3-glucan level
    0250 mg·kg−1500 mg·kg−11 000 mg·kg−1
    0 4.29±0.32C 4.29±0.32BC 4.29±0.32C 4.29±0.32B
    14 3.73±0.81BC 4.13±0.17BC 3.16±0.72ABC 2.80±0.66A
    28 1.63±0.14A 3.03±0.41AB 2.36±0.68ABC 2.33±0.37A
    42 3.60±0.45aBC 5.23±0.54bC 3.96±1.2aC 4.66±0.26abB
    56 3.26±0.61ABC 4.46±1.09BC 3.03±0.67ABC 3.00±0.68A
    70 1.80±0.30AB 2.00±0.36A 2.05±0.35A 2.76±0.55A
    84 3.53±0.71BC 2.30±0.06AB 2.06±0.34A 2.86±0.27A
    双因素方差分析PP-value of Two-Way ANOVA
    β-1,3-葡聚糖 β-1,3-glucan 0.201
    试验天数 Experimental days <0.001
    β-1,3-葡聚糖×试验天数 β-1,3-glucan×experimental days 0.611
    下载: 导出CSV

    表 6  β-1,3-葡聚糖对凡纳滨对虾血清乳酸盐浓度的影响

    Table 6.  Effect of dietary β-1,3-glucan on lactate content in serum of L. vannamei mmol·L−1

    天数
    Day
    β-1,3-葡聚糖水平 β-1,3-glucan level
    0250 mg·kg−1500 mg·kg−11 000 mg·kg−1
    0 918.24±120.51B 918.24±120.51B 918.24±120.51B 918.24±120.51B
    14 137.00±4.01aA 916.50±58.50bB 386.00±68.07aA 355.67±9.93aA
    28 72.00±2.30aA 326.66±39.67cA 215.00±13.00bcA 351.00±65.51cA
    42 208.00±85.55A 331.00±73.01A 152.33±61.57A 326.33±56.17A
    56 188.00±13.00A 349.66±119.38A 169.50±19.50A 368.66±114.39A
    70 49.66±12.86aA 69.33±1.85abA 48.00±11.59aA 100.67±23.81bA
    84 116.50±53.50abA 46.67±10.83aA 70.33±22.60aA 167.50±57.50bA
    双因素方差分析PP-value of Two-Way ANOVA
    β-1,3-葡聚糖 β-1,3-glucan <0.001
    试验天数 Experimental days <0.001
    β-1,3-葡聚糖×试验天数 β-1,3-glucan×Experimental days 0.205
    下载: 导出CSV

    表 7  β-1,3-葡聚糖对凡纳滨对虾肌肉超氧化物歧化酶活性的影响

    Table 7.  Effect of dietary β-1,3-glucan on SOD activity in muscle of L. vannamei U·mL−1

    天数
    Day
    β-1,3-葡聚糖水平 β-1,3-glucan level
    0250 mg·kg−1500 mg·kg−11 000 mg·kg−1
    0 3.19±0.14A 3.19±0.14A 3.19±0.14A 3.19±0.14A
    14 4.24±0.91A 3.37±0.23A 4.18±0.67A 3.35±0.33A
    28 6.29±0.57B 6.71±0.84B 5.05±1.13AB 6.17±0.23B
    42 6.29±0.23B 6.29±0.48B 6.21±0.41ABC 5.61±0.14B
    56 7.68±0.16aB 9.75±0.12bC 9.32±0.81abC 9.37±0.33abC
    70 7.69±0.49B 8.89±1.09BC 7.54±0.83BC 9.05±0.34C
    84 6.28±0.74B 6.57±1.33B 7.13±1.54ABC 6.54±1.61B
    双因素方差分析PP-value of Two-Way ANOVA
    β-1,3-葡聚糖 β-1,3-glucan 0.711
    试验天数 Experimental days <0.001
    β-1,3-葡聚糖×试验天数 β-1,3-glucan×Experimental days 0.797
    下载: 导出CSV

    表 8  β-1,3-葡聚糖对凡纳滨对虾肌肉过氧化氢酶活性的影响

    Table 8.  Effect of dietary β-1,3-glucan on CAT activity in muscle of L. vannamei U·mL−1

    天数
    Day
    β-1,3-葡聚糖水平 β-1,3-glucan level
    0250 mg·kg−1500 mg·kg−11 000 mg·kg−1
    0 2.68±0.79A 2.68±0.79A 2.68±0.79A 2.68±0.79A
    14 1.34±0.49aA 6.41±0.72bBC 3.19±1.10aA 3.05±0.54aAB
    28 2.97±0.25aA 4.74±0.91bB 2.87±0.35aA 2.25±0.17aA
    42 2.02±1.37A 1.32±0.55A 1.24±0.11A 4.37±2.04AB
    56 8.76±1.59aB 7.56±0.79aC 14.29±0.28bB 5.88±2.05aC
    70 2.61±0.49A 1.96±0.18A 1.92±1.34A 2.30±0.83A
    84 0.79±0.51aA 1.85±0.03abA 2.03±1.02abA 2.23±0.59abA
    双因素方差分析PP-value of Two-Way ANOVA
    β-1,3-葡聚糖 β-1,3-glucan 0.253
    试验天数 Experimental days <0.001
    β-1,3-葡聚糖×试验天数 β-1,3-glucan×Experimental days 0.001
    下载: 导出CSV

    表 9  β-1,3-葡聚糖对凡纳滨对虾肌肉溶菌酶活性的影响

    Table 9.  Effect of dietary β-1,3-glucan on lysozyme activity in muscle of L. vannamei U·mL−1

    天数
    Day
    β-1,3-葡聚糖水平 β-1,3-glucan level
    0250 mg·kg−1500 mg·kg−11 000 mg·kg−1
    0 9.45±0.31B 9.45±0.31A 9.45±0.31A 9.45±0.31B
    14 13.03±0.26aB 26.99±0.93bC 27.92±1.59bB 13.16±1.46aB
    28 1.32±0.55aA 8.24±0.26bA 6.47±2.39abA 4.69±1.98abA
    42 1.87±0.41aA 9.12±1.32cA 7.96±2.17bcA 3.40±1.65abA
    56 2.22±0.63aA 15.13±0.21bB 11.53±3.29bA 2.32±0.42aA
    70 0.89±0.38aA 8.39±2.79bA 8.74±2.82bA 2.44±1.41abA
    84 1.90±0.43aA 11.81±1.09bAB 13.13±0.24bA 1.98±0.14aA
    双因素方差分析PP-value of Two-Way ANOVA
    β-1,3-葡聚糖 β-1,3-glucan <0.001
    试验天数 Experimental days <0.001
    β-1,3-葡聚糖×试验天数 β-1,3-glucan×Experimental days <0.001
    下载: 导出CSV

    表 10  β-1,3-葡聚糖对凡纳滨对虾肌肉抗超氧阴离子活性的影响

    Table 10.  Effect of dietary β-1,3-glucan on level of anti-O2- in muscle of L. vannamei U·mL−1

    天数
    Day
    β-1,3-葡聚糖水平 β-1,3-glucan level
    0250 mg·kg−1500 mg·kg−11 000 mg·kg−1
    0 7.92±0.83A 7.92±0.83A 7.92±0.83A 7.92±0.83A
    14 8.27±0.54aA 10.75±0.12abA 14.32±0.61bcB 11.75±1.59abcAB
    28 13.04±0.43AB 14.01±1.44B 12.82±0.79AB 13.84±0.95B
    42 14.79±0.77B 16.47±0.65B 14.44±0.99B 12.93±0.46AB
    56 15.18±0.40aB 18.41±0.83abC 21.15±1.65bC 17.34±0.90abC
    70 12.96±0.33AB 13.41±0.51B 13.02±1.09AB 12.71±1.01AB
    84 11.02±0.85aAB 10.16±0.57aA 10.44±1.02aA 10.01±0.91aA
    双因素方差分析PP-value of Two-Way ANOVA
    β-1,3–葡聚糖 β-1,3-glucan 0.019
    试验天数 Experimental days <0.001
    β-1,3-葡聚糖×试验天数 β-1,3-glucan×Experimental days 0.022
    下载: 导出CSV

    表 11  β-1,3-葡聚糖对凡纳滨对虾肌肉总抗氧化能力的影响

    Table 11.  Effect of dietary β-1,3-glucan on level of T-AOC in muscle of L. vannamei U·mL−1

    天数
    Day
    β-1,3-葡聚糖水平 β-1,3-glucan level
    0250 mg·kg−1500 mg·kg−11 000 mg·kg−1
    0 0.32±0.02 0.32±0.02 A 0.32±0.02 AB 0.32±0.02 A
    14 0.32±0.11 0.41±0.02 A 0.40±0.04 AB 0.30±0.05 A
    28 0.38±0.04 0.51±0.05 AB 0.40±0.09 AB 0.44±0.08 AB
    42 0.39±0.07 0.44±0.08 A 0.26±0.03 A 0.31±0.02 A
    56 0.41±0.08 0.42±0.11 A 0.44±0.06 AB 0.53±0.02 B
    70 0.39±0.11 0.33±0.06 A 0.51±0.08 B 0.44±0.09 AB
    84 0.49±0.02 0.64±0.05 B 0.51±0.03 B 0.41±0.04 AB
    双因素方差分析PP-value of Two-Way ANOVA
    β-1,3-葡聚糖 β-1,3-glucan 0.406
    试验天数 Experimental days <0.001
    β-1,3-葡聚糖×试验天数 β-1,3-glucan×Experimental days 0.400
    下载: 导出CSV
  • [1] SAOUD I P, DAVIS D A, ROUSE D B. Suitability studies of inland well waters for Litopenaeus vannamei culture[J]. Aquaculture, 2003, 217(1): 373-383.
    [2] BRITOA R, CHIMAL M E, ROSAS C. Effect of salinity in survival, growth, and osmotic capacity of early juveniles of Farfantepenaeus brasiliensis (Decapoda: Penaeidae)[J]. J Exp Mar Biol Ecol, 2000, 244(2): 253-263. doi:  10.1016/S0022-0981(99)00142-2
    [3] WANG L U, CHEN J C. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus at different salinity levels[J]. Fish Shellfish Immunol, 2005, 18(4): 269-278. doi:  10.1016/j.fsi.2004.07.008
    [4] MELLO M M M, FARIA C F P, ZANUZZO F S, et al. β-glucan modulates cortisol levels in stressed pacu (Piaractus mesopotamicus) inoculated with heat-killed Aeromonas hydrophila[J]. Fish Shellfish Immun, 2019, 93(6): 1076-1083.
    [5] JAVAD J M, ABDOLMOHAMMAD A K, HAME P, et al. Effects of dietary β-glucan, mannan oligosaccharide, Lactobacillus plantarum and their combinations on growth performance, immunity and immune related gene expression of Caspian trout, Salmo trutta caspius (Kessler, 1877)[J]. Fish Shellfish Immun, 2019, 91(2): 202-208.
    [6] ZHAO H X, CAO J M, WANG A L, et al. Effect of long-term administration of dietary β-1, 3-glucan on growth, physiological and immune responses in Litopenaeus vannamei (Boone, 1931)[J]. Aquacult Int, 2012, 20(1): 145-158. doi:  10.1007/s10499-011-9448-6
    [7] BAI N, ZHANG W B, MAI K S, et al. Effects of discontinuous administration of β-glucan and glycyrrhizin on the growth and immunity of white shrimp Litopenaeus vannamei[J]. Aquaculture, 2010, 306(2): 218-224.
    [8] SORAAT A, SASIMANAS U, CHEEWARAT P, et al. Feeding-regimen of β-glucan to enhance innate immunity and disease resistance of Nile tilapia, Oreochromis niloticus Linn., against Aeromonas hydrophila and Flavobacterium columnare[J]. Fish Shellfish Immun, 2019, 87(1): 120-128.
    [9] ZHAO H X, CAO J M, WANG A L, et al. Effect of dietary β-1, 3-glucan on the immune response of Litopenaeus vannamei exposed to nitrite-N[J]. Aquacult Nutr, 2012, 18(3): 272-280. doi:  10.1111/j.1365-2095.2011.00893.x
    [10] CHAND R K, SAHOO P K, KUMARI J, et al. Administration of bovine lactoferrin influences the immune ability of the giant freshwater prawn Macrobrachium rosenbergii (de Man) and its resistance against Aeromonas hydrophila infection and nitrite stress[J]. Fish Shellfish Immun, 2006, 21(1): 119-129.
    [11] LI T, LI E, SUO Y, et al. Energy metabolism and metabolomics response of Pacific white shrimp Litopenaeus vannamei to sulfide toxicity[J]. Aquat Toxicol, 2017, 183(1): 28-37.
    [12] SHEN M, CUI Y, WANG R, et al. Acute response of Pacific white shrimp Litopenaeus vannamei to high-salinity reductions in osmosis-, metabolism-, and immune-related enzyme activities[J]. Aquacult Int, 2020, 28(1): 31-39. doi:  10.1007/s10499-019-00441-y
    [13] Association of Official Analytical Chemists (AOAC). Official Methods of Analysis[S]. 14th ed. Arlington, VA: 1984: 503-515.
    [14] ZHANG L L. Effects of dissolved oxygen, starvation, temperature, and salinity on the locomotive ability of juvenile Chinese shrimp Fenneropenaeus chinensis[J]. Ethol Ecol Evol, 2019, 31(2): 155-172. doi:  10.1080/03949370.2018.1526215
    [15] MALTEZ L C, BARBAS L A L, OKAMOTO M H, et al. Secondary stress responses in juvenile Brazilian flounder, Paralichthys orbignyanus, throughout and after exposure to sublethal levels of ammonia and nitrite[J]. J World Aquacult Soc, 2019, 50(2): 346-358. doi:  10.1111/jwas.12497
    [16] PERAZZOLO L M, GARGIONI R, OGLIARI P, et al. Evaluation of some hemato-immunological parameters in the shrimp Farfantepenaeus paulensis submitted to environmental and physiological stress[J]. Aquaculture, 2002, 214(1): 19-33.
    [17] CUZON G, LAWRENCE A, GAXIOLA G, et al. Nutrition of Litopenaeus vannamei reared in tanks or in ponds[J]. Aquaculture, 2004, 235(1): 513-551.
    [18] LÓPEZ N, CUZONB G, GAXIOLAC G, et al. Physiological, nutritional, and immunological role of dietary β 1-3 glucan and ascorbic acid 2-monophosphate in Litopenaeus vannamei juveniles[J]. Aquaculture, 2003, 224(1): 223-243.
    [19] 胡亚军, 胡毅, 石勇, 等. 不同形式蛋氨酸对黄鳝生长、血清生化、血清游离氨基酸含量及肌肉品质的影响[J]. 水生生物学报, 2019, 43(6): 1155-1163. doi:  10.7541/2019.136
    [20] MARANGOS C, BROGREN C H, ALLIOT E. The influence of water salinity on the free amino acid concentration in muscle and hepatopancreas of adult shrimps, Penaeus japonicus[J]. Biochem Syst Ecol, 1989, 17(3): 589-594.
    [21] IMSLAND A K, FOSS A, GUNNARSON S, et al. The interaction of temperature and salinity on growth and food conversion in juvenile turbot (Soophthalmus maximum)[J]. Aquaculture, 2001, 198(3): 353-367.
    [22] LI H, XU C, ZHOU L, et al. Beneficial effects of dietary β-glucan on growth and health status of Pacific white shrimp Litopenaeus vannamei at low salinity[J]. Fish Shellfish Immun, 2019, 91(4): 315-324.
    [23] HILL A D, TAYLOR A C, STRANG R H C. Physiological and metabolic responses of the shore crab Carcinus maenas (L.) during environmental anoxia and subsequent recovery[J]. J Exp Mar Biol Ecol, 1991, 150(1): 31-50. doi:  10.1016/0022-0981(91)90104-5
    [24] 胡文娟, 房文红, 江敏, 等. 淡水养殖凡纳滨对虾IHHNV-WSSV共感染率调查分析及其对免疫相关酶活性的影响[J]. 上海海洋大学学报, 2015, 24(5): 685-693.
    [25] NIU J, XIE S W, FANG H H, et al. Dietary values of macroalgae Porphyra haitanensis in Litopenaeus vannamei under normal rearing and WSSV challenge conditions: effect on growth, immune response and intestinal microbiota[J]. Fish Shellfish Immun, 2018, 81(1): 135-149.
    [26] MAHER P, HANNEKEN A. Flavonoids protect retinal ganglion cells from oxidative stress-induced death[J]. Invest Ophth Vis Sci, 2005, 46(12): 4796-4803. doi:  10.1167/iovs.05-0397
    [27] CHANG C F, SU M S, CHEN H Y, et al. Dietary β-1, 3-glucan effectively improves immunity and survival of Penaeus monodon challenged with white spot syndrome virus[J]. Fish Shellfish Immun, 2003, 15(4): 297-310. doi:  10.1016/S1050-4648(02)00167-5
    [28] CHENG W, LIU C H, KUO C M, et al. Dietary administration of solium alginate enhances the immune ability of white shrimp Litopenaeus vannamei and its resistance against Vibrio alginolyticus[J]. Fish Shellfish Immun, 2005, 18(1): 1-12. doi:  10.1016/j.fsi.2004.03.002
    [29] LIU C H, YEH S P, KUO C M, et al. The effect of sodium alginate on the immune response of tiger shrimp via dietary administration: activity and gene transcription[J]. Fish Shellfish Immun, 2006, 21(4): 442-53. doi:  10.1016/j.fsi.2006.02.003
    [30] 宋泰, 黄艇, 张晨捷, 等. 养殖水体中二种溶解态铜对凡纳滨对虾生长和免疫功能的影响[J]. 上海海洋大学学报, 2019, 28(1): 75-83.
    [31] 方金龙, 王元, 房文红, 等. 氨氮胁迫下白斑综合征病毒对凡纳滨对虾的致病性[J]. 南方水产科学, 2017, 13(4): 52-58.
    [32] HUANG X, ZHOU H, ZHANG H. The effect of Sargassum fusiforme polysaccharide extract s on vibriosis resistance and immune activity of the shrimp, Fenneropenaeus chinensis[J]. Fish Shellfish Immun, 2006, 20(5): 750-757. doi:  10.1016/j.fsi.2005.09.008
    [33] BAGNI M, ROMANO N, FINOIA M G, et al. Short- and long-term effects of a dietary yeast β-glucan (Macrogard) and alginic acid (Ergosan) preparation on immune response in sea bass (Dicentrarchus labrax)[J]. Fish Shellfish Immun, 2005, 18(4): 311-325. doi:  10.1016/j.fsi.2004.08.003
    [34] de BAULNY M O, QUENTEL C, FOURNIER V, et al. Effect of long-term oral administration of β-glucan as an immunostimulant or an adjuvant on some non-specific parameters of the immune response of turbot Scophthalmus maximus[J]. Dis Aquat Organ, 1996, 26(2): 139-47.
  • [1] 彭军辉程长洪冯娟谢佳伟马红玲郭志勋 . 番石榴叶水提取物对拟穴青蟹免疫相关酶活力的影响. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2018.03.008
    [2] 付腾宋沙沙马红玲王博陈新祥郭志勋 . 硝态氮对凡纳滨对虾部分血清免疫因子的影响. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2016.02.007
    [3] 张华军李卓佳张家松张晓阳曹煜成文国樑程开敏 . 密度胁迫对凡纳滨对虾稚虾免疫指标及生长的影响. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2012.04.007
    [4] 文国樑林黑着李卓佳陆鑫袁丰华 . 饲料中添加复方中草药对凡纳滨对虾生长、消化酶和免疫相关酶活性的影响. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2012.02.009
    [5] 赵艳张凤枰刘耀敏 . 超高效液相色谱-串联质谱法测定凡纳滨对虾中的硝基呋喃代谢物残留. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2011.04.009
    [6] 张月段亚飞董宏标张家松 . 聚β-羟基丁酸酯对凡纳滨对虾肝胰腺免疫和消化指标的影响. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2017.05.011
    [7] 陆家昌李活黄翔鹄 . 枯草芽孢杆菌对水质及凡纳滨对虾幼体免疫指标影响的研究. 南方水产科学, doi: 10.3969/j.issn.1673-2227.2010.01.004
    [8] 王芸李正段亚飞王珺黄忠林黑着 . 红景天提取物对凡纳滨对虾抗氧化系统及抗低盐度胁迫的影响. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2018.01.002
    [9] 粟丽朱长波陈素文 . 混养罗非鱼对凡纳滨对虾养殖围隔中悬浮颗粒物和弧菌数量的影响. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2015.06.003
    [10] 李振达陈小娥廖智蒋雅美 . 壳寡糖对凡纳滨对虾生长和免疫力的影响. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2011.04.006
    [11] 黄忠林黑着李卓佳郭志勋牛津黄春阳 . 复方中草药投喂策略对凡纳滨对虾生长、消化及非特异性免疫功能的影响. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2013.05.007
    [12] 陈义方李卓佳牛津王胜 林黑着陈永青王芸黄忠 . 饲料蛋白水平对不同规格凡纳滨对虾蛋白质表观消化率和消化酶活性的影响. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2012.05.010
    [13] 曹俊明严晶王国霞黄燕华张荣斌周婷婷刘群芳孙智武 . 家蝇蛆粉替代鱼粉对凡纳滨对虾消化酶、转氨酶活性和肝胰腺组织结构的影响. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2012.05.011
    [14] 叶乐杨莺莺吴开畅李卓佳 . 益生菌在凡纳滨对虾育苗中的应用. 南方水产科学,
    [15] 段亚飞黄忠林黑着董宏标张家松 . 深水网箱和池塘养殖凡纳滨对虾肌肉营养成分的比较分析. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2017.02.013
    [16] 段亚飞黄忠林黑着董宏标张家松 . 深水网箱和池塘养殖凡纳滨对虾肌肉营养成分的比较分析. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2017.02.012
    [17] 陈培基李刘冬杨金兰黎智广杨宏亮王强 . 孔雀石绿在凡纳滨对虾体内的残留与消除规律. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2013.05.013
    [18] 童馨龚世圆喻达辉杜博黄桂菊李莉好郭奕惠李色东 . 凡纳滨对虾不同世代生长性状的变异. 南方水产科学,
    [19] 林黑着叶乐陈燕军周竞晖李卓佳吴开畅 . 速大肥在凡纳滨对虾饲料中的应用. 南方水产科学,
    [20] 李金亮陈雪芬赖秋明鲁春雨陈金玲苏树叶 . 凡纳滨对虾高位池养殖氮磷收支研究. 南方水产科学, doi: 10.3969/j.issn.1673-2227.2010.05.003
  • 加载中
计量
  • 文章访问数:  461
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-17
  • 录用日期:  2020-04-27
  • 网络出版日期:  2020-06-12

β-1,3-葡聚糖对低盐度凡纳滨对虾血液代谢物和免疫的影响

    作者简介:赵红霞(1976—),女,博士,研究员,从事水产动物营养与饲料研究。E-mail: zhaohongxia8866@163.com
  • 广东省农业科学院动物科学研究所/农业农村部华南动物营养与饲料重点实验室/广东省畜禽育种与营养研究重点实验室,广东 广州 510640

摘要: 为研究长期投喂β-1,3-葡聚糖对低盐度 (5) 养殖凡纳滨对虾 (Litopenaeus vannamei) 血液代谢物和肌肉免疫相关酶活性的影响,以初始体质量为 (0.65±0.01) g的凡纳滨对虾为研究对象,分别投喂添加0、250、500和1 000 mg·kg−1 β-1,3-葡聚糖的4种等氮等脂试验饲料,试验期84 d。结果显示,凡纳滨对虾血清乳酸盐和肌肉溶菌酶活性最高值出现在摄食后的第14天,总蛋白、甘油三酯、胆固醇、葡萄糖含量最高值出现在第42天,超氧化物歧化酶、过氧化氢酶、抗超氧阴离子水平的最高值出现在第56天。与对照组相比,饲料中添加250 mg·kg−1 β-1,3-葡聚糖显著提高了凡纳滨对虾血清甘油三酯、胆固醇、葡萄糖、乳酸盐含量和超氧化物歧化酶活性 (P<0.05);500 mg·kg−1 β-1,3-葡聚糖显著提高了其血清总蛋白、抗超氧阴离子水平 (P<0.05),250或500 mg·kg−1 β-1,3-葡聚糖可显著增强过氧化氢酶、溶菌酶活性 (P<0.05)。饲料中添加250或500 mg·kg−1 β-1,3-葡聚糖14、42或56 d,可显著提高低盐度养殖凡纳滨对虾营养物质代谢和非特异性免疫功能。

English Abstract

参考文献 (34)

返回顶部

目录

    /

    返回文章
    返回