留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环境DNA在水生生态系统生物量评估中的研究进展

秦传新 左涛 于刚 周文礼 李纯厚

秦传新, 左涛, 于刚, 周文礼, 李纯厚. 环境DNA在水生生态系统生物量评估中的研究进展[J]. 南方水产科学, 2020, 16(5): 123-128. doi: 10.12131/20190256
引用本文: 秦传新, 左涛, 于刚, 周文礼, 李纯厚. 环境DNA在水生生态系统生物量评估中的研究进展[J]. 南方水产科学, 2020, 16(5): 123-128. doi: 10.12131/20190256
Chuanxin QIN, Tao ZUO, Gang YU, Wenli ZHOU, Chunhou LI. Advances in research of environmental DNA (eDNA) in biomass assessment of aquatic ecosystems[J]. South China Fisheries Science, 2020, 16(5): 123-128. doi: 10.12131/20190256
Citation: Chuanxin QIN, Tao ZUO, Gang YU, Wenli ZHOU, Chunhou LI. Advances in research of environmental DNA (eDNA) in biomass assessment of aquatic ecosystems[J]. South China Fisheries Science, 2020, 16(5): 123-128. doi: 10.12131/20190256

环境DNA在水生生态系统生物量评估中的研究进展

doi: 10.12131/20190256
基金项目: 国家重点研发计划“蓝色粮仓科技创新”专项 (2018YFD0900905);南方海洋科学与工程广东省实验室 (广州) 人才团队引进重大专项 (GML2019ZD0402);广东省基础与应用基础研究基金项目 (2019B1515120065);中国水产科学研究院南海水产研究所基本科研业务费专项资金资助项 (2020YJ04,2020SY01)
详细信息
    作者简介:

    秦传新 (1978—),男,博士,副研究员,从事渔业资源保护和环境修复研究。E-mail: qincx@scsfri.ac.cn

  • 中图分类号: S 932.2

Advances in research of environmental DNA (eDNA) in biomass assessment of aquatic ecosystems

  • 摘要: 环境DNA (Environment DNA, eDNA) 技术因其无创、高效、经济、灵敏等特点在水生生态系统生物评价中愈来愈引起人们的重视。文章围绕eDNA技术的内容、应用现状和面临的挑战3个方面,系统综述了该技术在实验室环境和野外环境水生生态系统生物量评估中的应用进展,探讨其优劣势、生态过程、评估错误等内容,展望了该技术在水生生物量评估领域的应用前景,以期为eDNA技术的相关应用研究提供参考。
  • [1] KNUDSEN S W, EBERT R B, HESSELSØE M, et al. Species-specific detection and quantification of environmental DNA from marine fishes in the Baltic Sea[J]. J Exp Mar Biol Ecol, 2019, 510: 31-45. doi:  10.1016/j.jembe.2018.09.004
    [2] 郝雅宾, 张爱菊, 刘金殿, 等. 环境DNA技术在鱼类资源研究中的应用[J]. 生物技术通报, 2018, 34(12): 56-62.
    [3] EVANS N T, SHIREY P D, WIERINGA J G, et al. Comparative cost and effort of fish distribution detection via environmental DNA analysis and electrofishing[J]. Fisheries, 2017, 42(2): 90-99. doi:  10.1080/03632415.2017.1276329
    [4] FICETOLA G F, MIAUD C, POMPANON F, et al. Species detection using environmental DNA from water samples[J]. Biol Lett, 2008, 4(4): 423-425. doi:  10.1098/rsbl.2008.0118
    [5] 李晗溪, 黄雪娜, 李世国, 等. 基于环境DNA-宏条形码技术的水生生态系统入侵生物的早期监测与预警[J]. 生物多样性, 2019, 27(5): 491-504. doi:  10.17520/biods.2018233
    [6] 李苗, 单秀娟, 王伟继, 等. 中国对虾生物量评估的环境DNA检测技术的建立及优化[J]. 渔业科学进展, 2019, 40(1): 12-19.
    [7] 李萌, 尉婷婷, 史博洋, 等. 环境DNA技术在淡水底栖大型无脊椎动物多样性监测中的应用[J]. 生物多样性, 2019, 27(5): 480-490. doi:  10.17520/biods.2018227
    [8] TAKAHARA T, MINAMOTO T, YAMANAKA H, et al. Estimation of fish biomass using environmental DNA[J]. PLoS One, 2012, 7(4): e35868. doi:  10.1371/journal.pone.0035868
    [9] WILLERSLEV E, HANSEN A J, BINLADEN J. Diverse plant and animal genetic records from holocene and pleistocene sediments[J]. Science, 2003, 300(5620): 791-795. doi:  10.1126/science.1084114
    [10] 吴昀晟, 唐永凯, 李建林, 等. 环境DNA在长江江豚监测中的应用[J]. 中国水产科学, 2019, 26(1): 124-132.
    [11] TURNER C R, BARNES M A, XU C C Y, et al. Particle size distribution and optimal capture of aqueous macrobial eDNA[J]. Methods Ecol Evol, 2014, 5(7): 676-684. doi:  10.1111/2041-210X.12206
    [12] 单秀娟, 李苗, 王伟继. 环境DNA (eDNA) 技术在水生生态系统中的应用研究进展[J]. 渔业科学进展, 2018, 39(3): 23-29.
    [13] 高天翔, 陈治, 王晓艳. 近海鱼类多样性调查新方法——环境DNA分析技术[J]. 浙江海洋大学学报(自然科学版), 2018, 37(1): 1-7.
    [14] 卢珊. 常见水生动物与其环境DNA的定性与定量关系[D]. 南京: 南京南京师范大学, 2015: 12.
    [15] NATHAN L M, MEGAN S, WEGLEITNER B J, et al. Quantifying environmental DNA signals for aquatic invasive species across multiple detection platforms[J]. Environ Sci Technol, 2014, 48(21): 12800-12806. doi:  10.1021/es5034052
    [16] LACOURSIÈRE-ROUSSEL A, HOWLAND K, NORMANDEAU E, et al. eDNA metabarcoding as a new surveillance approach for coastal Arctic biodiversity[J]. Ecol Evol, 2018, 8(16): 7763-7777. doi:  10.1002/ece3.4213
    [17] 赵明, 赵梦迪, 马春艳, 等. 环境DNA在水域生态中的研究进展[J]. 中国水产科学, 2018, 25(4): 714-720.
    [18] 陈治, 陈建威, 王晓艳, 等. 舟山近海环境DNA保存方法的建立及优化[J]. 海洋与湖沼, 2019, 50(5): 1098-1107. doi:  10.11693/hyhz20190200034
    [19] 孙晶莹, 杨江华, 张效伟. 环境DNA (eDNA) 宏条形码技术对枝角类浮游动物物种鉴定及其生物量监测研究[J]. 生态毒理学报, 2018, 13(5): 76-86. doi:  10.7524/AJE.1673-5897.20180108001
    [20] MAUVISSEAU Q, PARRONDO M, FERNÁNDEZ M P, et al. On the way for detecting and quantifying elusive species in the sea: the Octopus vulgaris case study[J]. Fish Res, 2017, 191: 41-48. doi:  10.1016/j.fishres.2017.02.023
    [21] 赵梦迪. 利用环境DNA分析冬季中国东黄海水域的鱼类多样性[D]. 上海: 上海海洋大学, 2017: 42.
    [22] 李蕊. 水环境游离DNA表征及其应用探索 [D]. 南京: 东南大学, 2017: 49.
    [23] MIYA M, SATO Y, FUKUNAGA T, et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species[J]. Roy Soc Open Sci, 2015, 2(7): 150088. doi:  10.1098/rsos.150088
    [24] YAMAMOTO S, MASUDA R, SATO Y, et al. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea[J]. Sci Rep, 2017, 7: 40368. doi:  10.1038/srep40368
    [25] STRICKLER K M, FREMIER A K, GOLDBERG C S. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms[J]. Biol Conserv, 2015, 183: 85-92. doi:  10.1016/j.biocon.2014.11.038
    [26] MARUYAMA A, NAKAMURA K, YAMANAKA H, et al. The release rate of environmental DNA from juvenile and adult fish[J]. PLoS One, 2014, 9(12): e114639. doi:  10.1371/journal.pone.0114639
    [27] EICHMILLER J J, BEST S E, SORENSEN P W. Effects of temperature and trophic state on degradation of environmental DNA in lake water[J]. Environ Sci Technol, 2016, 50(4): 1859-1867. doi:  10.1021/acs.est.5b05672
    [28] KLYMUS K E, RICHTER C A, CHAPMAN D C, et al. Quantification of eDNA shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix[J]. Biol Conserv, 2015, 183: 77-84. doi:  10.1016/j.biocon.2014.11.020
    [29] SASSOUBRE L M, YAMAHARA K M, GARDNER L D, et al. Quantification of environmental DNA (eDNA) shedding and decay rates for three marine fish[J]. Environ Sci Technol, 2016, 50(19): 10456-10464. doi:  10.1021/acs.est.6b03114
    [30] KELLY R P, PORT J A, YAMAHARA K M, et al. Harnessing DNA to improve environmental management[J]. Science, 2014, 344(6191): 1455-1456. doi:  10.1126/science.1251156
    [31] EVANS N T, OLDS B P, RENSHAW M A, et al. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding[J]. Mol Ecol Resour, 2015, 16(1): 29-41.
    [32] PILLIOD D S, GOLDBERG C S, ARKLE R S, et al. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples[J]. Can J Fish Aquat Sci, 2013, 70(8): 1123-1130. doi:  10.1139/cjfas-2013-0047
    [33] BALDIGO B P, SPORN L A, GEORGE S D, et al. Efficacy of environmental DNA to detect and quantify Brook trout populations in headwater streams of the adirondack mountains, New York[J]. Trans Am Fish Soc, 2016, 146(1): 99-111.
    [34] YAMAMOTO S, MINAMI K, FUKAYA K, et al. Environmental DNA as a 'Snapshot' of fish distribution: a case study of Japanese jack mackerel in Maizuru Bay, Sea of Japan[J]. PLoS One, 2016, 11(3): e0149786. doi:  10.1371/journal.pone.0149786
    [35] RICE C J, LARSON E R, TAYLOR C A. Environmental DNA detects a rare large river crayfish but with little relation to local abundance[J]. Freshw Biol, 2018, 63(5): 443-455. doi:  10.1111/fwb.13081
    [36] TILLOTSON M D, KELLY R P, DUDA J J, et al. Concentrations of environmental DNA (eDNA) reflect spawning salmon abundance at fine spatial and temporal scales[J]. Biol Conserv, 2018, 220: 1-11. doi:  10.1016/j.biocon.2018.01.030
    [37] LACOURSIÈRE-ROUSSEL A, CÔTÉ G, LECLERC V, et al. Quantifying relative fish abundance with eDNA: a promising tool for fisheries management[J]. J Appl Ecol, 2016, 53(4): 1148-1157. doi:  10.1111/1365-2664.12598
    [38] HERING D, BORJA A, JONES J I, et al. Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive[J]. Water Res, 2018, 138: 192-205. doi:  10.1016/j.watres.2018.03.003
    [39] CERCO C F, SCHULTZ M T, NOEL M R, et al. A fate and transport model for Asian carp environmental DNA in the Chicago area waterways system[J]. J Great Lakes Res, 2018, 44(4): 813-823. doi:  10.1016/j.jglr.2018.04.010
    [40] PILLIOD D S, GOLDBERG C S, ARKLE R S, et al. Factors influencing detection of eDNA from a stream-dwelling amphibian[J]. Mol Ecol Resour, 2014, 14(1): 109-116. doi:  10.1111/1755-0998.12159
    [41] LANCE R, KLYMUS K, RICHTER C, et al. Experimental observations on the decay of environmental DNA from bighead and silver carps[J]. Manag Biol Invasion, 2017, 8(3): 343-359. doi:  10.3391/mbi.2017.8.3.08
    [42] RUPPERT K M, KLINE R J, RAHMAN M S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA[J]. Glob Ecol Conserv, 2019, 17: e00547. doi:  10.1016/j.gecco.2019.e00547
    [43] LODGE D M, TURNER C R, JERDE C L, et al. Conservation in a cup of water: estimating biodiversity and population abundance from environmental DNA[J]. Mol Ecol, 2012, 21: 2555-2558.
  • 加载中
计量
  • 文章访问数:  1521
  • HTML全文浏览量:  777
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-19
  • 修回日期:  2020-05-10
  • 网络出版日期:  2020-10-09
  • 刊出日期:  2020-10-05

目录

    /

    返回文章
    返回