留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TGF-β/Smad信号通路响应光周期变化参与调控斑马鱼卵巢发育

刘春晓 吕为群 杨志刚 陈阿琴

引用本文:
Citation:

TGF-β/Smad信号通路响应光周期变化参与调控斑马鱼卵巢发育

    作者简介: 刘春晓(1994—),女,硕士研究生,从事水产动物分子生物学研究。E-mail: 1426841828@qq.com;
    通讯作者: 陈阿琴, aqchen@shou.edu.cn
  • 中图分类号: S917.4

TGF-β/Smad signaling pathway responding to photoperiod for participation in regulation of zebrafish ovarian development

    Corresponding author: Aqin CHEN, aqchen@shou.edu.cn
  • CLC number: S917.4

  • 摘要: 为研究不同光周期条件下转化生长因子-β超家族/Samd (TGF-β/Smad)信号通路在斑马鱼 (Danio rerio)卵巢中的作用,利用荧光定量PCR技术检测连续黑暗 (0 L∶24 D, DD)、自然光照 (14 L∶10 D, LD)和连续光照 (24 L∶0 D, LL)条件下斑马鱼卵巢中TGF-β/Smad信号通路中相关基因的相对表达量,并利用免疫组化技术检测不同光周期条件下p-Smad2在斑马鱼卵巢中的定位情况。结果显示,在不同光周期条件下,TGF-β/Smad信号通路中信号分子在斑马鱼卵巢中的表达模式不尽相同,其中配体 (tgfb3)、受体 (tgfbr2atgfbr2btgfbr1b)和下游蛋白激酶 (smad2和smad3a)的表达趋势一致,即在不同光周期处理3 d后,上述6个基因的相对表达量DD组最高,LL组最低,但处理7 d后则呈相反趋势。在斑马鱼卵黄发生前期至充分生长未成熟期的卵母细胞中均检测到p-Smad2蛋白信号,但光周期处理后未影响p-Samd2在斑马鱼卵巢中的定位。以上结果表明,光周期变化可能通过改变 tgfb3/受体/蛋白激酶基因的表达模式影响斑马鱼卵巢发育。
  • 图 1  不同光周期处理对斑马鱼卵巢中tgfb1a (a)、tgfb1b (b)、tgfb2 (c)和tgfb3 (d) mRNA表达的影响

    Figure 1.  Effects of different photoperiods on ovarytgfb1a(a), tgfb1b(b),tgfb2(c) andtgfb3 (d) mRNA levels in zebrafish

    图 2  不同光周期处理对斑马鱼卵巢中tgfbr2a (a)、tgfbr2b (b)、tgfbr1a (c)和tgfbr1b (d) mRNA表达的影响

    Figure 2.  Effects of different photoperiods on ovary tgfbr2a (a), tgfbr2b (b), tgfbr1a (c)和tgfbr1b (d) mRNA levels in zebrafish

    图 3  不同光周期处理对斑马鱼卵巢中smad2(a)、smad3a (b)和smad3b (c) mRNA表达的影响

    Figure 3.  Effects of different photoperiods on ovary smad2 (a), smad3a (b) and smad3b (c) mRNA levels in zebrafish

    图 4  不同光周期处理对p-smad2在斑马鱼卵巢中定位的影响

    Figure 4.  Effects of different photoperiods on localization of p-smad2 in zebrafish ovary

    表 1  实时荧光定量PCR所用引物序列

    Table 1.  Primer sequences used for quantitative real-time PCR

    基因
    gene
    引物序列 (5’-3’)
    primer sequence
    NCBI登录号
    NCBI accession No.
    ef1a[16] F: GGCTGACTGTGCTGTGCTGATTG NM_131263
    R: CAGACTTGTGGCAGGTGTAA
    tgfb1a F: TGTACCCGCAATCCTTGACC NM_182873.1
    R: CCGACTGAGAAATCGAGCCA
    tgfb1b F: ATAGCAGGTTTGTCCCGCAA XM_687246.8
    R: ATAGGAGCAAGAGCCAGTGC
    tgfb2 F: CAACAGCAAAGTGGTTCGCA NM_194385.1
    R: AATGTGGAGACTGACCGCTG
    tgfb3 F: GGACCGAGCAGAGAATCGAG NM_194386.2
    R: CGTCGAAGGAAACCCACTCA
    tgfbr2a F: ATGTCTGCTCTTCTCCGCAC XM_009293931.3
    R: AGCATCGGCTTTAGTGGGTC
    tgfbr2b F: TCACGTCCAGATGTAACGCC NM_182855.3
    R: CAGTTTGTCCAGGTCGTCGT
    tgfbr1a F: GTGTCAATCGGTCGTGCAAC NM_001037683.2
    R: CACACAGATGGGGACAGCAA
    tgfbr1b F: GAGTCGGCACCAAACGGTAT NM_001115059.1
    R: CTGCCATCTGTTGGGGATGT
    smad2 F: AAGTCTGCGTCAATCCCTACCACT NM_001290015.1
    R: TAGTCGTCCAAAGGTGGCAACTCA
    smad3a F: CAAACCTGTCACCGAACCCT NM_131571.2
    R: GCAGTCCGAGACAAAAACGC
    smad3b F: TGGACACAGGTTCTCCAACG NM_175083.2
    R: TGGAAAGTCTCACCGACACG
    下载: 导出CSV
  • [1] ARTIGAS G Q, LAPEBIE P, LECLERE L A, et al. A gonad-expressed opsin mediates light-induced spawning in the jellyfish Clytia[J]. Elife, 2018, 7: e29555 doi: 10.7554/eLife.29555
    [2] SOKOLOWSKA E, KLESZCZYNSKA A, NIETRZEBA M, et al. Annual changes in brain concentration of arginine vasotocin and isotocin correspond with phases of reproductive cycle in round goby, Neogobius melanostomus[J]. Chronobiol Int, 2015, 32(7): 917-924 doi: 10.3109/07420528.2015.1052142
    [3] HANSEN T J, FJELLDAL P G, FOLKEDAL O, et al. Effects of light source and intensity on sexual maturation, growth and swimming behaviour of Atlantic salmon in sea cages[J]. Aquacult Env Interac, 2017, 9: 193-204 doi: 10.3354/aei00224
    [4] TARANGER G L, AARDAL L, HANSEN T, et al. Continuous light delays sexual maturation and increases growth of Atlantic cod (Gadus morhua L.) in sea cages[J]. ICES J Mar Sci, 2006, 63(2): 365-375 doi: 10.1016/j.icesjms.2005.10.014
    [5] LEE C H, PARK Y J, LEE Y D. Effects of photoperiod manipulation on gonadal activity of the damselfish, Chromis notata[J]. Dev Reprod, 2017, 21(2): 223-228 doi: 10.12717/DR.2017.21.2.223
    [6] TAKEUCHI Y, HADA N, IMAMURA S, et al. Existence of a photoinducible phase for ovarian development and photoperiod-related alteration of clock gene expression in a damselfish[J]. Comp Biochem Physiol A, 2015, 188: 32-39 doi: 10.1016/j.cbpa.2015.06.010
    [7] PARMEGGIANI A, GOVONI N, ZANNONI A, et al. Effect of photoperiod on endocrine profiles and vitellogenin expression in European eels Anguilla anguilla during artificially induced ovarian development[J]. Theriogenology, 2015, 83(4): 478-484 doi: 10.1016/j.theriogenology.2014.10.008
    [8] IMSLAND A K, JONASSEN T M, HANGSTAD T A, et al. The effect of continuous light and compressed photoperiods on growth and maturation in lumpfish Cyclopterus lumpus[J]. Aquaculture, 2018, 485: 166-172 doi: 10.1016/j.aquaculture.2017.11.053
    [9] LUO K X. Signaling cross talk between TGF-beta/Smad and other signaling pathways[J]. Cold Spring Harb Perspect Biol, 2017, 9(1): a022137 doi: 10.1101/cshperspect.a022137
    [10] 詹绪良, 吴金英, 李文笙. TGF-β系统及其在硬骨鱼中的研究进展[J]. 南方水产科学, 2013, 9(3): 90-96 doi: 10.3969/j.issn.2095-0780.2013.03.015
    [11] ZHU B, PARDESHI L, CHEN Y Y, et al. Transcriptomic analysis for differentially expressed genes in ovarian follicle activation in the zebrafish[J]. Front Endocrinol (Lausanne), 2018, 9: 593 doi: 10.3389/fendo.2018.00593
    [12] KOHLI G, HU S Q, CLELLAND E, et al. Cloning of transforming growth factor-β1 (TGF-β1) and its type Ⅱ receptor from zebrafish ovary and role of TGF-β1 in oocyte maturation[J]. Endocrinology, 2003, 144(5): 1931-1941 doi: 10.1210/en.2002-0126
    [13] KOHLI G, CLELLAND E, PENG C. Potential targets of transforming growth factor-beta1 during inhibition of oocyte maturation in zebrafish[J]. Reprod Biol Endocrinol, 2005, 3: 53 doi: 10.1186/1477-7827-3-53
    [14] SLOIN H E, RUGGIERO G, RUBINSTEIN A, et al. Interactions between the circadian clock and TGF-β signaling pathway in zebrafish[J]. PLoS ONE, 2018, 13(6): e0199777 doi: 10.1371/journal.pone.0199777
    [15] GAST H, GORDIC S, PETRZILKA S, et al. Transforming growth factor‐beta inhibits the expression of clock genes[J]. Ann NY Acad Sci, 2012, 1261(1): 79-87 doi: 10.1111/nyas.2012.1261.issue-1
    [16] LIU K C, LIN S W, GE W. Differential regulation of gonadotropin receptors (fshr and lhcgr) by estradiol in the zebrafish ovary involves nuclear estrogen receptors that are likely located on the plasma membrane[J]. Endocrinology, 2011, 152(11): 4418-4430 doi: 10.1210/en.2011-1065
    [17] SELMAN K, WALLACE R A, SARKA A, et al. Stages of oocyte development in the zebrafish, Brachydanio rerio[J]. J Morphol, 1993, 218(2): 203-224 doi: 10.1002/(ISSN)1097-4687
    [18] WANG Y, GE W. Developmental profiles of activin betaA, betaB, and follistatin expression in the zebrafish ovary: evidence for their differential roles during sexual maturation and ovulatory cycle[J]. Biol Reprod, 2004, 71(6): 2056-2064 doi: 10.1095/biolreprod.104.032649
    [19] CHU Y L, XU Y R, YANG W X, et al. The role of FSH and TGF-β superfamily in follicle atresia[J]. Aging, 2018, 10(3): 305-321 doi: 10.18632/aging.v10i3
    [20] WANG D, WANG W, LIANG Q, et al. DHEA-induced ovarian hyperfibrosis is mediated by TGF-β signaling pathway[J]. J Ovarian Res, 2018, 11(1): 6 doi: 10.1186/s13048-017-0375-7
    [21] BASU M, BHATTACHARYA R, RAY U, et al. Invasion of ovarian cancer cells is induced by PITX2-mediated activation of TGF-β and Activin-A[J]. Mol Cancer, 2015, 14(1): 162 doi: 10.1186/s12943-015-0433-y
    [22] HATZIRODOS N, BAYNE R A, IRVING-RODGERS H F, et al. Linkage of regulators of TGF-β activity in the fetal ovary to polycystic ovary syndrome[J]. FASEB J, 2011, 25(7): 2256-2265 doi: 10.1096/fj.11-181099
    [23] KNIGHT P G, GLISTER C. TGF-beta superfamily members and ovarian follicle development[J]. Reproduction, 2006, 132(2): 191-206 doi: 10.1530/rep.1.01074
    [24] ROSAIRO D, KUYZNIEREWICZ I, FINDLAY J A. Transforming growth factor-beta: its role in ovarian follicle development[J]. Reproduction, 2008, 136(6): 799-809 doi: 10.1530/REP-08-0310
    [25] LIU X, ANDOH K, ABE Y, et al. A comparative study on transforming growth factor-beta and activin A for preantral follicles from adult, immature, and diethylstilbestrol-primed immature mice[J]. Endocrinology, 1999, 140(6): 2480-2485 doi: 10.1210/endo.140.6.6827
    [26] HELDIN C H, MOUSTAKAS A. Signaling receptors for TGF-β family members[J]. CSH Perspect Biol, 2016, 8(8): a022053
    [27] TAN Q, BALOFSKY A, WEISZ K, et al. Role of activin, transforming growth factor-β and bone morphogenetic protein 15 in regulating zebrafish oocyte maturation[J]. Comp Biochem Physiol A, 2009, 153(1): 18-23
    [28] CHEN W T, LIU L, GE W. Expression analysis of growth differentiation factor 9 (Gdf9/gdf9), anti-müllerian hormone (Amh/amh) and aromatase (Cyp19a1a/cyp19a1a) during gonadal differentiation of the zebrafish, Danio rerio[J]. Biol Reprod, 2017, 96(2): 401-413 doi: 10.1095/biolreprod.116.144964
    [29] ITOH S, TEN DIJKE P. Negative regulation of TGF-β receptor/Smad signal transduction[J]. Curr Opin Cell Biol, 2007, 19(2): 176-184 doi: 10.1016/j.ceb.2007.02.015
    [30] MIYAZAWA K, MIYAZONO K. Regulation of TGF-β family signaling by inhibitory smads[J]. Cold Spring Harbor Perspect Biol, 2016, 9(3): a022095
    [31] DONG C M, LI Z R, ALVAREZ R, et al. Microtubule binding to smads may regulate TGFβ activity[J]. Mol Cell, 2000(5): 27-34
    [32] WANG Y, GE W. Spatial expression patterns of activin and its signaling system in the zebrafish ovarian follicle: evidence for paracrine action of activin on the oocytes[J]. Biol Reprod, 2003, 69(6): 1998-2006 doi: 10.1095/biolreprod.103.020826
  • [1] 郭松傅明骏赵超李伟杰江世贵杨其彬周发林邱丽华 . 斑节对虾细胞周期蛋白T基因的克隆和表达分析. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2016.01.009
    [2] 李运彩张松林白芳铭赵国庆陈粉丽 . 氯代苯和烷基酚类化合物斑马鱼毒性的定量构效关系分析. 南方水产科学, doi: 10.3969/j.issn.1673-2227.2010.03.004
    [3] 吴松唐蕾傅明骏杨丽诗黄建华周发林江世贵 . 斑节对虾泛素融合蛋白UbS27基因克隆与表达分析. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2016.01.011
    [4] 黄桂菊喻达辉郭奕惠王小玉 . 大豆异黄酮对鱼类免疫增强作用的初步研究. 南方水产科学,
    [5] 戴文婷傅明骏赵超周发林杨其彬王艳史进选邱丽华 . 斑节对虾CDK2基因全长cDNA克隆及表达分析. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2015.02.001
    [6] 傅明骏赵超周发林邱丽华江世贵 . 斑节对虾泛素结合酶PmUbc基因的克隆及表达分析. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2015.06.006
    [7] 周发林黄建华邱丽华杨其彬江世贵 . 斑节对虾细胞周期蛋白B慢病毒载体的构建及对Hela 细胞增殖影响. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2014.04.003
    [8] 赵旺杨其彬陈旭陈明强温为庚 . 猛虾蛄卵巢发育特征及其纳精囊内容物超显微观察. 南方水产科学, doi: 10.12131/20180119
    [9] 温为庚林黑着牛津黄建华杨其彬江世贵 . 野生斑节对虾卵巢发育过程中不同组织的氨基酸组成. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2013.05.005
    [10] 韩萍杨丽诗吴松杨其彬黄建华周发林江世贵 . 促性腺激素释放激素及多巴胺拮抗物地欧酮对斑节对虾卵巢组织发育的影响. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2015.02.007
    [11] 蔡瑞钰赵健蓉黄静王志坚苏胜齐 . 云南盘鳇仔稚鱼发育的初步观察. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2018.03.015
    [12] 孙庆海施维德孙建璋 . 鮸鱼早期发育的形态学初步研究. 南方水产科学,
    [13] 黄小林李涛林黑着杨育凯虞为黄忠 . 网箱养殖黄斑篮子鱼胚胎发育观察. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2018.02.013
    [14] 杨洋陈瑶万玉芳邓思红何学福王志坚金丽 . 短须裂腹鱼与鲈鲤杂交F1代胚胎及仔稚鱼发育观察. 南方水产科学, doi: 10.12131/20180075
    [15] 马学坤柳学周温海深张璐 . 漠斑牙鲆胚胎及仔稚鱼发育的形态学观察. 南方水产科学,
    [16] 柴学军孙敏许源剑 . 温度和盐度对日本黄姑鱼胚胎发育的影响. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2011.05.007
    [17] 苏天凤江世贵 . 竹筴鱼属鱼类线粒体DNA控制区结构及其系统发育分析. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2011.01.003
    [18] 龙华王祖荣 . 15种鱼转铁蛋白cDNA序列密码子使用比较分析. 南方水产科学,
    [19] 陈子桂肖述潘英喻子牛 . 近江牡蛎(Crassostrea hongkongensis)家系早期发育生长比较. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2011.06.007
    [20] 彭文姜敬哲王江勇丁雪娟 , . 理化因子对杂色鲍血蓝蛋白酚氧化酶活性影响的研究. 南方水产科学, doi: 10.3969/j.issn.1673-2227.2010.02.001
  • 加载中
计量
  • 文章访问数:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-20
  • 录用日期:  2019-01-16
  • 网络出版日期:  2019-02-18

TGF-β/Smad信号通路响应光周期变化参与调控斑马鱼卵巢发育

    作者简介:刘春晓(1994—),女,硕士研究生,从事水产动物分子生物学研究。E-mail: 1426841828@qq.com
    通讯作者: 陈阿琴, aqchen@shou.edu.cn
  • 1. 海洋生物科学国际联合研究中心,中国科学技术部,上海海洋大学,上海 201306
  • 2. 水产科学国家级实验教学示范中心,上海海洋大学,上海 201306
  • 3. 水产种质资源发掘与利用教育部重点实验室,上海海洋大学,上海 201306

摘要: 为研究不同光周期条件下转化生长因子-β超家族/Samd (TGF-β/Smad)信号通路在斑马鱼 (Danio rerio)卵巢中的作用,利用荧光定量PCR技术检测连续黑暗 (0 L∶24 D, DD)、自然光照 (14 L∶10 D, LD)和连续光照 (24 L∶0 D, LL)条件下斑马鱼卵巢中TGF-β/Smad信号通路中相关基因的相对表达量,并利用免疫组化技术检测不同光周期条件下p-Smad2在斑马鱼卵巢中的定位情况。结果显示,在不同光周期条件下,TGF-β/Smad信号通路中信号分子在斑马鱼卵巢中的表达模式不尽相同,其中配体 (tgfb3)、受体 (tgfbr2atgfbr2btgfbr1b)和下游蛋白激酶 (smad2和smad3a)的表达趋势一致,即在不同光周期处理3 d后,上述6个基因的相对表达量DD组最高,LL组最低,但处理7 d后则呈相反趋势。在斑马鱼卵黄发生前期至充分生长未成熟期的卵母细胞中均检测到p-Smad2蛋白信号,但光周期处理后未影响p-Samd2在斑马鱼卵巢中的定位。以上结果表明,光周期变化可能通过改变 tgfb3/受体/蛋白激酶基因的表达模式影响斑马鱼卵巢发育。

English Abstract

相关文章 (20)

返回顶部

目录

    /

    返回文章
    返回