An analysis of spatial co-occurrence pattern of fish species of Yangtze River estuary based on probabilistic model
-
摘要: 根据2012—2014年长江口的渔业资源调查数据,采用概率模型、网络分析方法对长江口鱼类群落物种空间共现模式及影响因素进行综合分析。结果表明,长江口鱼类群落模式主要为物种的随机共现,群落构建中以中性元素的影响占主导地位,环境变化驱动的随机因素对种间共现的影响大于种间相互作用;种间共现模式有显著的季节差异,这种季节差异主要与海洋洄游型鱼类和河口定居型鱼类的季节更替有关;高物种权度和中间中心性种类的季节性更替影响种间共现模式的随机性;棘头梅童鱼(Collichthys lucidus)对群落内信息交换的控制能力较强,在长江口鱼类群落中处于核心地位。Abstract: Based on the data of fishery resources surveys in the Yangtze River estuary from 2012 to 2014, the spatial co-occurrence patterns and influencing factors of fish communities in that area were analyzed by using probability model and network analysis method. The results show that the fish community pattern in the Yangze River estuary is mainly the random co-occurrence of species. The influence of neutral elements was dominant in community construction, and the effect of random factors driven by environmental change on interspecific co-occurrence was greater than that of interspecific interaction. There was significant seasonal difference in the patterns of interspecific co-occurrence, which was mainly related to the seasonal changes of migratory marine fish and estuarine sediment fish. The seasonal replacement of fish species with high weighted degree and betweenness centrality might also have caused the high number of randomly associated pairs of species. It is also shown that Collikithys lucidus has strong ability to control information exchange within the community and is at the core of the fish community structure in the Yangtze River estuary.
-
表 1 长江口鱼类组成 (2012—2014年)
Table 1. Fish species composition in Yangtze River estuary (2012−2014)
目
Order科
Family种
Species频次
frequency相对重要性指数
IRI鲱形目 Clupeiformes 鳀科 赤鼻棱鳀 Thrissa kammalensis 3 0.62 黄鲫 Setipinna taty 2 0.07 刀鲚 Coilia nasus 56 128.20 凤鲚 Coilia mystus 34 73.15 鲑形目 Salmoniformes 银鱼科 大银鱼 Protosalanx hyalocranius 4 0.18 灯笼鱼目 Myctophiformes 狗母鱼科 龙头鱼 Harpodon nehereus 24 77.77 鳗鲡目 Anguilliformes 海鳗科 海鳗 Muraensox cinereus 3 0.41 鲤形目 Cypriniformes 鲤科 贝氏䱗 Hemiculter bleekeri 3 0.27 长蛇 Saurogobio dumerili 3 0.21 鲇形目 Siluriformes 鲿科 光泽黄颡鱼 Pelteobagrus nitidus 31 58.81 长吻 Leiocassis longirostris 4 0.48 鲻形目 Mugiliformes 鲻科 鲻 Mugil cephalus 2 0.13 鮻 Liza haematocheila 5 0.32 鲈形目 Perciformes 马鲅科 多鳞四指马鲅 Eleutheronema rhadinum 5 0.35 鮨科 中国花鲈 Lateolabrax maculatus 6 1.23 石首鱼科 黄姑鱼 Nibea albifora 16 30.26 白姑鱼 Argyrosomus argentatus 30 47.78 鮸 Miichthys miiuy 8 3.12 棘头梅童鱼 Collichthys lucidus 48 1 340.92 虾虎鱼科 髭缟虾虎鱼 Triaenopogon barbatus 11 7.10 纹缟虾虎鱼 Tridentiger trigonocephalus 1 0.04 波氏吻虾虎鱼 Ctenogobius cliffordpopei 1 0.01 狼牙鳗虾虎鱼 Taenioides anguillaris 54 185.98 拉氏狼牙虾虎鱼 Odontamblyopus lacepedii 5 1.81 睛尾蝌蚪虾虎鱼 Lophiogobius ocellicauda 53 262.44 矛尾虾虎鱼 Chaeturichthys stigmatias 31 198.59 斑尾刺虾虎鱼 Synechogobius ommaturus 11 6.72 孔虾虎鱼 Trypauchen vagina 38 120.72 鲳科 银鲳 Pampus argenteus 8 1.50 䲗科 香斜棘䲗 Repomucenus olidus 2 0.04 鲉形目 Scorpaeniformes 鲂鮄科 小眼绿鳍鱼 Chelidonichthys spinosus 1 0.88 鲬科 鲬 Platycephalus indicus 1 0.01 鲽形目 Pleuronectiformes 舌鳎科 日本须鳎 Paraplagusia japonica 1 0.03 短吻红舌鳎 Cynoglossus joyneri 23 109.89 窄体舌鳎 Cynoglossus gracilis 75 705.37 鳎科 带纹条鳎 Zebrias zebra 1 0.21 鲀形目 Tetraodontiformes 鲀科 暗纹东方鲀 Takifugu obscurus 1 0.02 黄鳍东方鲀 Takifugu xanthopterus 1 0.37 表 2 长江口鱼类共现模式呈正相关、负相关和随机性的种对数量
Table 2. Number of pairs of fish species with positive, negative and random co-occurrence patterns in Yangtze River estuary
月份
month物种数
number of species共现模式
pattern of co-occurrence正相关
positive负相关
negative随机
random2月 Feb. 18 3 3 147 5月 May 24 11 4 261 8月 Aug. 27 51 4 296 11月 Nov. 27 26 6 319 总体 total 38 76 12 615 -
[1] VEECH J A. A probability-based analysis of temporal and spatial co-occurrence in grassland birds[J]. J Biogeogr, 2006, 33(12): 2145-2153. doi: 10.1111/jbi.2006.33.issue-12 [2] 牛克昌, 刘怿宁, 沈泽昊, 等. 群落构建的中性理论和生态位理论[J]. 生物多样性, 2009, 17(6): 579-593. [3] MACI S, BASSET A. Composition, structural characteristics and temporal patterns of fish assemblages in non-tidal Mediterranean lagoons: a case study[J]. Estuar Coast Shelf Sci, 2009, 83(4): 602-612. doi: 10.1016/j.ecss.2009.05.007 [4] BELL G. The distribution of abundance in neutral communities[J]. Am Nat, 2000, 155(5): 606-617. doi: 10.1086/303345 [5] HUBBELL S P. Neutral theory in community ecology and the hypothesis of functional equivalence[J]. Funct Ecol, 2005, 19(1): 166-172. doi: 10.1111/fec.2005.19.issue-1 [6] GRAVEL D, CANHAM C D, BEAUDET M, et al. Reconciling niche and neutrality: the continuum hypothesis[J]. Ecol Lett, 2006, 9(4): 399-409. doi: 10.1111/j.1461-0248.2006.00884.x [7] LEIBOLD M A, MCPEEK M A. Coexistence of the niche and neutral perspectives in community ecology[J]. Ecology, 2006, 87(6): 1399-1410. doi: 10.1890/0012-9658(2006)87[1399:COTNAN]2.0.CO;2 [8] GOTELLI N J. Null model analysis of species co-occurrence patterns[J]. Ecology, 2000, 81(9): 2606-2621. doi: 10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2 [9] PERESNETO P R. Patterns in the co-occurrence of fish species in streams: the role of site suitability, morphology and phylogeny versus species interactions[J]. Oecologia, 2004, 140(2): 352-360. doi: 10.1007/s00442-004-1578-3 [10] 史赟荣, 沈新强, 王云龙. 海湾鱼类群落物种共现机制──以湄洲湾为例[J]. 中国水产科学, 2016, 23(1): 169-176. [11] ECHEVARRÍA G, RODRÍGUEZ J P. Co-occurrence patterns of fish species in two aquatic habitats of the Arauca River floodplain, Venezuela[J]. Community Ecol, 2017, 18(2): 137-148. doi: 10.1556/168.2017.18.2.3 [12] VEECH J A. A probabilistic model for analysing species co-occurrence[J]. Global Ecol Biogeogr, 2013, 22(2): 252-260. doi: 10.1111/j.1466-8238.2012.00789.x [13] PROULX S R, PROMISLOW D E, PHILLIPS P C. Network thinking in ecology and evolution[J]. Trends Ecol Evol, 2005, 20(6): 345-353. doi: 10.1016/j.tree.2005.04.004 [14] GIRVAN M, NEWMAN M E. Community structure in social and biological networks[J]. Proc Natl Acad Sci USA, 2002, 99(12): 7821-7826. doi: 10.1073/pnas.122653799 [15] 杨涛, 单秀娟, 金显仕, 等. 莱州湾鱼类群落的关键种[J]. 水产学报, 2016, 40(10): 1613-1623. [16] WILLIAMS R J, HOWE A, HOFMOCKEL K S. Demonstrating microbial co-occurrence pattern analyses within and between ecosystems[J]. Front Microbiol, 2014, 5: 358. [17] MORUETA-HOLME N, BLONDER B, SANDEL B, et al. A network approach for inferring species associations from co-occurrence data[J]. Ecography (Cop.), 2016, 39(12): 1139-1150. doi: 10.1111/ecog.01892 [18] 杨刚. 长江口鱼类群落结构及其与重要环境因子的相关性[D]. 上海: 上海海洋大学, 2012: 21-34. [19] 庄平. 长江口鱼类[M]. 上海: 上海科学技术出版社, 2006: 67-389. [20] GRIFFITH D M, VEECH J A, MARSH C J. Cooccur: probabilistic species co-occurrence analysis in R[J]. J Stat Softw, 2016, 69(C2): 1-17. [21] CSÁRDI G, NEPUSZ T. The igraph software package for complex network research[J]. Int J Complex Syst, 2006: 1695. [22] OPSAHL T, AGNEESSENS F, SKVORETZ J. Node centrality in weighted networks: generalizing degree and shortest paths[J]. Soc Networks, 2010, 32(3): 245-251. doi: 10.1016/j.socnet.2010.03.006 [23] OPSAHL T. Structure and evolution of weighted networks[M]. London: Queen Mary University of London, 2009: 104-122. [24] BARRAT A, BARTHÉELEMY M, PASTOR-SATORRAS R, et al. The architecture of complex weighted networks[J]. Proc Natl Acad Sci USA, 2004, 101(11): 3747-3752. doi: 10.1073/pnas.0400087101 [25] 张崇良, 陈勇, 韩东燕, 等. 生态模型在渔业管理中的应用[J]. 海洋学报, 2017, 39(10): 1-18. doi: 10.3969/j.issn.0253-4193.2017.10.001 [26] PETRY P, BAYLEY P B, MARKLE D F. Relationships between fish assemblages, macrophytes and environmental gradients in the Amazon River floodplain[J]. J Fish Biol, 2003, 63(3): 547-579. doi: 10.1046/j.1095-8649.2003.00169.x [27] LEWIS W M, HAMILTON S K, LASI M A, et al. Ecological determinism on the Orinoco floodplain[J]. Bioscience, 2000, 50(8): 681-692. doi: 10.1641/0006-3568(2000)050[0681:EDOTOF]2.0.CO;2 [28] HOEINGHAUS D J, WINEMILLER K O, BIRNBAUM J S. Local and regional determinants of stream fish assemblage structure: inferences based on taxonomic vs. functional groups[J]. J Biogeogr, 2007, 34(2): 324-338. doi: 10.1111/jbi.2007.34.issue-2 [29] De AZEVEDO M C, ARAÚJO F G, PESSANHA A L M, et al. Co-occurrence of demersal fishes in a tropical bay in southeastern Brazil: a null model analysis[J]. Estuar Coast Shelf Sci, 2006, 66(1): 315-322. [30] BARRIO I C, HIK D S, BUENO C G, et al. Extending the stress-gradient hypothesis-is competition among animals less common in harsh environments?[J]. Oikos, 2013, 122(4): 516-523. doi: 10.1111/more.2013.122.issue-4 [31] 罗秉征, 韦晟, 窦硕增. 长江口鱼类食物网与营养结构的研究[J]. 海洋科学集刊, 1997(1): 147-157. [32] 沈新强, 史赞荣, 晁敏, 等. 夏、秋季长江口鱼类群落结构[J]. 水产学报, 2011, 35(5): 700-710. [33] 张衡, 全为民, 陈渊戈, 等. 长江口口门区潮下带水域鱼类群落组成的季节变化[J]. 长江流域资源与环境, 2014, 23(11): 1534-1539. -