留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2015—2017年市售贝类产品中氯霉素的暴露评估

杨宏亮 黄珂 李刘冬 柯常亮 赵东豪 刘奇 莫梦松 陈洁文

引用本文:
Citation:

2015—2017年市售贝类产品中氯霉素的暴露评估

    作者简介: 杨宏亮(1983—),男,硕士,助理研究员,从事水产品质量安全研究。E-mail: vc-515@163.com;
    通讯作者: 黄珂, xiamike@163.com
  • 中图分类号: TS 201.6; R 155.5

Exposure assessment on chloramphenicol residues in commercially available shellfish in 2015–2017

    Corresponding author: Ke HUANG, xiamike@163.com ;
  • CLC number: TS 201.6; R 155.5

  • 摘要: 为调查市售贝类产品中氯霉素的残留状况并对该情况进行暴露评估,2015—2017年采集贝类样品共300个,采用液质法进行检测。将结果运用@risk软件进行蒙特卡罗模拟分析,通过计算膳食摄入量和人群估计暴露量,对所得结果进行暴露边界比(margin of exposure,MOE)评价。结果显示,2015年有33个样品有检出,人群平均暴露的MOE值为15 361,按照加拿大卫生部的评价标准,属于中危害水平。高暴露人群的MOE值为5 208,属于中危害水平。2016年有3个样品有检出,人群平均暴露的MOE值为103 627,属于中危害水平。高暴露人群的MOE值为34 722,属于中危害水平。2017年未检出氯霉素,属于无危害水平。
  • 图 1  氯霉素的膳食暴露量概率分布曲线

    Figure 1.  Probability distribution curve of dietary exposure of chloramphenicol

    表 1  2015—2017年市售贝类产品采样情况

    Table 1.  Sample collection of commercially available shellfish in 2015−2017

    年份
    year
    样品种类
    species
    数量
    quantity
    2015 文蛤 Meretrix meretrix 23
    菲律宾蛤仔 Ruditapes philippinarum 23
    杂色蛤仔 R. variegata 33
    波纹巴非蛤 Paphia undulata 10
    东风螺 Babylonia areolata 11
    小计 subtotal 100
    2016 文蛤 M. meretrix 26
    波纹巴非蛤 P. undulata 11
    菲律宾蛤仔 R. philippinarum 8
    翡翠贻贝 P. viridis 55
    小计 subtotal 100
    2017 文蛤 M. meretrix 15
    杂色蛤仔 R. variegata 6
    波纹巴非蛤 P. undulata 12
    翡翠贻贝 P. viridis 67
    小计 subtotal 100
    总计 total 300
    下载: 导出CSV

    表 2  2015—2017年市售贝类产品中氯霉素残留检测结果

    Table 2.  Result of determination of chloramphenicol residues in commercially available shellfish in 2015−2017

    年份
    year
    采集样品数
    quantity of collected samples
    阳性样品数
    quantity of positive samples
    检出值/μg·kg–1
    range of concentration
    2015 100 33 0.36~4 050
    2016 100 3 50.4~820
    2017 100 0
    总计 total 300 36 0.36~4 050
    下载: 导出CSV

    表 3  氯霉素的膳食暴露量分析@risk软件计算参数

    Table 3.  @risk parameter to calculate dietary exposure of chloramphenicol

    描述
    description
    分布
    distribution
    2015年氯霉素残留量 chloramphenicol residue, 2015 RiskNormal (121.43, 524.71, RiskTruncate(0, ))
    2015年膳食摄入量 daily intake, 2015 RiskNormal (0.01, 1, RiskTruncate(0.007, 0.013))
    2015年膳食暴露量 dietary exposure, 2015 RiskOutput()+B1*B2
    2016年氯霉素残留量 chloramphenicol residue, 2016 RiskNormal (9.4125, 82.293, RiskTruncate(0, ))
    2016年膳食摄入量 daily intake, 2016 RiskNormal (0.01, 1, RiskTruncate(0.007, 0.013))
    2016年膳食暴露量 dietary exposure, 2016 RiskOutput()+B4*B5
    下载: 导出CSV

    表 4  氯霉素的膳食暴露量

    Table 4.  Dietary exposure of chloramphenicol

    年份
    year
    膳食暴露量/μg·kg–1 dietary exposure
    概率分布中位百分数
    P50
    概率分布第95百分位数
    P95
    2015 3.91 11.5
    2016 0.579 1.73
    2017
    下载: 导出CSV

    表 5  氯霉素的人群估计暴露量及暴露边界比

    Table 5.  Estimated dietary exposure and margin of exposure of chloramphenicol

    年份
    year
    人群估计暴露量/μg·d–1
    EXP
    暴露边界比
    MOE
    概率分布中位百分数
    P50
    概率分布第95百分位数
    P95
    概率分布中位百分数
    P50
    概率分布第95百分位数
    P95
    2015 0.065 1 0.192 15 361 5 208
    2016 0.009 65 0.028 8 103 627 34 722
    2017
    下载: 导出CSV
  • [1] IARC. IARC monograhs on the evaluation of carcinogenic risk to humans[EB/OL]. (2018-04-18) [2018-04-20]. http://monographs.iarc.fr/ENG/Classification/latest_classif.php.
    [2] TIAN L, BAYEN S. Thermal degradation of chloramphenicol in model solutions, spiked tissues and incurred samples[J]. Food Chem, 2018, 248: 230-237 doi: 10.1016/j.foodchem.2017.12.043
    [3] KIKUCHI H, SAKAI T, TESHIMA R, et al. Total determination of chloramphenicol residues in foods by liquid chromatography-tandem mass spectrometry[J]. Food Chem, 2017, 230: 589-593 doi: 10.1016/j.foodchem.2017.03.071
    [4] SAMANIDOU V, KEHAGIA M, KABIR A, et al. Matrix molecularly imprinted mesoporous sol-gel sorbent for efficient solid-phase extraction of chloramphenicol from milk[J]. Analytica Chimica Acta, 2016, 914: 62-74 doi: 10.1016/j.aca.2016.02.003
    [5] 陆威达. 上海市动物性食品中氯霉素残留及人群暴露的研究[D]. 上海: 复旦大学, 2013: 6-7.
    [6] 国家药典委员会. 中华人民共和国药典临床用药须知[M]. 北京: 中国医药科技出版社, 2011: 718-721.
    [7] 中华人民共和国农业部公告第235号——动物性食品中兽药最高残留限量[EB/OL]. (2002-12-24) [2015-12-01]. http://www.moa.gov.cn/govpublic/SYJ/201006/t20100606_1535491.htm.
    [8] 王君, 吴永宁. 遗传毒性致癌物风险评估的新技术[J]. 国外医学: 卫生学分册, 2009, 36(6): 369-371
    [9] 王敏娟, 聂晓玲, 程国霞, 等. 陕西省淡水鱼中孔雀石绿的污染调查及居民膳食暴露评估[J]. 卫生研究, 2015, 44(6): 965-969
    [10] NUGRAHA A, KHOTIMAH K, RIETJENS I M. Risk assessment of aflatoxin B1 exposure from maize and peanut consumption in Indonesia using the margin of exposure and liver cancer risk estimation approaches[J]. Food Chem Toxicol, 2018, 113: 134-144 doi: 10.1016/j.fct.2018.01.036
    [11] THOMPSON C M, KIRMAN C R, HAYS S M. Integration of mechanistic and pharmacokinetic information to derive oral reference dose and margin-of-exposure values for hexavalent chromium[J]. J Appl Toxicol, 2017, 38(3): 351-365
    [12] OKARU A O, RULLMANN A, FARAH A, et al. Comparative oesophageal cancer risk assessment of hot beverage consumption (coffee, mate and tea): the margin of exposure of PAH vs very hot temperatures[J]. BMC Cancer, 2018, 18(1): 236 doi: 10.1186/s12885-018-4060-z
    [13] 段文佳, 张晓燕, 周德庆. 水产品来源的甲醛膳食暴露评估初步研究[J]. 食品工业科技, 2012, 33(3): 305-308, 421
    [14] 袁玉伟, 王强, 朱加虹, 等. 食品中农药残留的风险评估研究进展[J]. 浙江农业学报, 2011, 23(2): 394-399 doi: 10.3969/j.issn.1004-1524.2011.02.039
    [15] 周德庆. 水产品安全风险评估理论与案例[M]. 青岛: 中国海洋大学出版社, 2013: 221.
    [16] 王阳, 徐明芳, 耿梦梦, 等. 基于Monte Carlo模拟法对水源水体中微囊藻毒素的健康风险评估[J]. 环境科学, 2017(5): 1842-1851
    [17] 段文佳, 周德庆, 张瑞玲. 基于蒙特卡罗的水产品中甲醛定量风险评估[J]. 中国农学通报, 2011, 27(23): 65-69
    [18] GEMS/Food-WHO. Reliable evaluation of low-level contaminant of food, workshop in the frame of GEMS/Food-EURO[R]. Kulmbach, Germany: WHO, 1995.
    [19] Tolerance Reassessment Advisory Committee. Regulating risk from undetected residues in food[R]. Wsahington D.C., USA: Office of pesticide programs. Environmental Protection Agency, 1998.
    [20] 白新明. 蔬菜农药残留对人体健康急性风险概率评估研究[J]. 食品科学, 2014, 35(5): 208-212
    [21] 张易. 茶叶中水溶性氟化物安全风险分析及安徽茶园土壤−茶树系统氟富集特性[D]. 合肥: 安徽农业大学, 2013: 14.
    [22] 刘畅. 食品中兽药残留高通量筛查与检测平台的建立及膳食暴露评估研究[D]. 上海: 第二军医大学, 2013: 100-125.
    [23] WHO. GEMS/Food cluster diets 2013[EB/OL]. (2015-01-12) [2015-12-01]. https://extranet.who.int/sree/Reports?op=vs&path=/WHO_HQ_Reports/G7/PROD/EXT/GEMS_cluster_diets_2012&userid=G7_ro&password=inetsoft123.
    [24] NING J, CUI X Y, KONG X N, et al. Risk assessment of genotoxic and carcinogenic alkenylbenzenes in botanical containing products present on the Chinese market[J]. Food Chem Toxicol, 2018, 115: 344-357 doi: 10.1016/j.fct.2018.03.020
    [25] FAO, WHO. Specifications for the identity and purity of food additives and their toxicological evaluation: some antibiotics (twelfth report of the Joint FAO/WHO expert committee on food additives)[R]. Geneva: FAO/WHO, 1969.
    [26] EUROPEAN UNION. Commission Decision 2003/181/EC, March 13, 2003, amending decision 2002/657/EC as regards the setting of minimum required performance limits (MRPLs) for certain residues in food of animal origin[J]. Official J EU, 2003, 71: 17-18
    [27] 翟凤英, 杨晓光. 中国居民营养与健康状况调查报告之二2002膳食与营养素摄入状况[M]. 北京: 人民卫生出版社, 2006: 23.
    [28] 张永慧, 马文军. 广东省居民膳食营养与健康状况十年变化分析[M]. 北京: 中国标准出版社, 2016: 33.
    [29] 常继乐, 王宇. 中国居民营养与健康状况监测2010-2013年综合报告[M]. 北京: 北京大学医学出版社, 2016: 30.
    [30] 唐洪磊, 郭英, 孟祥周, 等. 广东省沿海城市居民膳食结构及食物污染状况的调研——对持久性卤代烃和重金属的人体暴露水平评价[J]. 农业环境科学学报, 2009, 28(2): 329-336 doi: 10.3321/j.issn:1672-2043.2009.02.020
    [31] Van DEN BERG S L, ALHUSAINY W, RESTANI P, et al. Chemical analysis of estragole in fennel based teas and associated safety assessment using the margin of exposure (MOE) approach[J]. Food Chem Toxicol, 2014, 65: 147-154 doi: 10.1016/j.fct.2013.12.035
  • [1] 张园吴成业赵春晖曹爱英李英 . 液相色谱质谱联用法测定水产品中泰乐霉素残留方法的研究. 南方水产科学, 2013, 9(2): 57-62. doi: 10.3969/j.issn.2095-0780.2013.02.010
    [2] 王增焕林钦李刘冬王许诺 . 华南沿海贝类体镉的调查与膳食暴露评估. 南方水产科学, 2012, 8(5): 9-14. doi: 10.3969/j.issn.2095-0780.2012.05.002
    [3] 刘勇施坤涛张少华原永党 . 贝类呼吸代谢的研究进展. 南方水产科学, 2007, 3(4): 65-69.
    [4] 卢振彬杜琦钱小明许翠娅蔡清海方明杰 . 福建诏安湾贝类养殖容量的研究. 南方水产科学, 2005, 1(5): 1-9.
    [5] 卢振彬杜琦钱小明蔡清海许翠娅方民杰 . 福建围头湾贝类的养殖容量. 南方水产科学, 2006, 2(6): 31-38.
    [6] 徐文其沈建 . 中国贝类前处理加工技术研究进展. 南方水产科学, 2013, 9(2): 76-80. doi: 10.3969/j.issn.2095-0780.2013.02.013
    [7] 王许诺王增焕林钦李刘冬杨美兰 . 广东沿海贝类4种重金属含量分析和评价. 南方水产科学, 2008, 4(6): 83-87.
    [8] 杜静黄会张华威宫向红张秀珍 . 山东养殖贝类中有机氯农药与多氯联苯污染特征及风险评价. 南方水产科学, 2019, 15(3): 1-13. doi: 10.12131/20180238
    [9] 沙爱龙 . 流式细胞仪在贝类研究中的应用. 南方水产科学, 2007, 3(6): 71-74.
    [10] 傅群黄珂甘居利 . 环境激素与水产品质量安全. 南方水产科学, 2005, 1(4): 64-68.
    [11] 罗方方钱卓真林荣晓吴成业 . HPLC-MS/MS法测定水产品中硫酸粘素、杆菌肽及维吉尼霉素M1的残留量. 南方水产科学, 2013, 9(4): 63-69. doi: 10.3969/j.issn.2095-0780.2013.04.011
    [12] 钱卓真刘智禹邓武剑魏博娟 . 高效液相色谱-串联质谱法测定水产品中玉米赤霉醇类激素药物残留量. 南方水产科学, 2011, 7(1): 62-68. doi: 10.3969/j.issn.2095-0780.2011.01.010
    [13] 魏博娟吴成业钱卓真 . 液质联用法测定水产品中喹诺酮类药物残留量的不确定度评定. 南方水产科学, 2012, 8(3): 59-64. doi: 10.3969/j.issn.2095-0780.2012.03.009
    [14] 王增焕柯常亮王许诺李刘冬 . 流沙湾贝类养殖海域环境质量评价. 南方水产科学, 2011, 7(3): 24-30. doi: 10.3969/j.issn.2095.0780.2011.03.007
    [15] 苏秀华吴成业钱卓真 . 水产品中替米考星残留量检测的条件优化. 南方水产科学, 2010, 6(3): 12-18. doi: 10.3969/j.issn.1673-2227.2010.03.003
    [16] 赵东豪黎智广黄珂杨金兰陈培基 . 高效液相色谱-串联质谱法检测水产品中三聚氰胺残留的比较研究. 南方水产科学, 2010, 6(3): 32-35. doi: 10.3969/j.issn.1673-2227.2010.03.006
    [17] 张海琪何中央郑重莺叶累海施礼科 . 液相色谱-串联质谱法测定水产品中孔雀石绿的残留量. 南方水产科学, 2007, 3(6): 14-21.
    [18] 林钦石凤琼柯常亮孙闰霞于紫玲 . 水产品中邻苯二甲酸酯残留与健康风险评价研究进展. 南方水产科学, 2014, 10(1): 92-99. doi: 10.3969/j.issn.2095-0780.2014.01.014
    [19] 杨金兰陈培基黎智广赵东豪邹琴 . 高效液相色谱法测定水产品中孔雀石绿残留量的的优化研究. 南方水产科学, 2010, 6(4): 43-49. doi: 10.3969/j.issn.1673-2227.2010.04.008
    [20] 李红艳张喆陈海刚马胜伟陈炜婷王涛蔡文贵 . 三唑磷短期暴露对翡翠贻贝的毒性效应. 南方水产科学, 2013, 9(5): 71-79. doi: 10.3969/J.ISSN.2095-0780.2013.05.011
  • 加载中
图(1)表(5)
计量
  • 文章访问数:  1144
  • HTML全文浏览量:  1246
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-08
  • 录用日期:  2018-06-10
  • 网络出版日期:  2018-12-05
  • 刊出日期:  2019-02-01

2015—2017年市售贝类产品中氯霉素的暴露评估

    作者简介:杨宏亮(1983—),男,硕士,助理研究员,从事水产品质量安全研究。E-mail: vc-515@163.com
    通讯作者: 黄珂, xiamike@163.com
  • 中国水产科学研究院南海水产研究所,农业农村部水产品加工重点实验室,农业农村部水产品贮藏保鲜质量安全风险评估实验室(广州),广东 广州 510300

摘要: 为调查市售贝类产品中氯霉素的残留状况并对该情况进行暴露评估,2015—2017年采集贝类样品共300个,采用液质法进行检测。将结果运用@risk软件进行蒙特卡罗模拟分析,通过计算膳食摄入量和人群估计暴露量,对所得结果进行暴露边界比(margin of exposure,MOE)评价。结果显示,2015年有33个样品有检出,人群平均暴露的MOE值为15 361,按照加拿大卫生部的评价标准,属于中危害水平。高暴露人群的MOE值为5 208,属于中危害水平。2016年有3个样品有检出,人群平均暴露的MOE值为103 627,属于中危害水平。高暴露人群的MOE值为34 722,属于中危害水平。2017年未检出氯霉素,属于无危害水平。

English Abstract

  • 氯霉素(chloramphenicol,CAP)是一种具有旋光活性的高效广谱抗菌药,农业生产上可以有效治疗家畜家禽及水产生物所患的由致病性革兰阴性菌引起的疾病[1-3]。然而,氯霉素可以引起一系列严重的“三致”毒性和临床不良反应[4]。氯霉素对实验动物的致癌性证据充分,而对人体的致癌性证据有限。因此世界卫生组织(World Health Organization,WHO)中的国际癌症研究机构(International Agency for Research on Cancer,IARC)在1990年将其归为2A类致癌物质(对人很可能致癌)[1,5]。此外,氯霉素可通过短期可逆性的骨髓抑制,引起各类血细胞的减少,如血小板减少性紫癜、粒细胞缺乏症等。严重时氯霉素可引起不可逆的再生障碍性贫血,患者造血功能极少恢复,虽然发生较晚但死亡率高,而且存活者也容易发生粒细胞性白血病。氯霉素的另一个严重不良反应是会引起灰婴综合征(gray baby syndrome,GBS),摄入大剂量氯霉素后,血药浓度异常增高引起婴儿的循环衰竭[6]

    因此,我国农业部235号公告明确规定,氯霉素为禁止用于所有食品动物的药物,在所有食品动物中不得检出[7]。近年来,有媒体报道称在贝类产品中检出氯霉素,原因可能是运输者为了防止贝类在运输途中滋生细菌,人为非法添加氯霉素。针对该情况,笔者对2015—2017年市场、渔获码头贝类进行了跟踪抽样调查,采用GB/T 20756—2006液相色谱-串联质谱法,对贝类样品中氯霉素残留状况进行了检测,并采用国际食品法典委员会(CAC)推荐的遗传毒性致癌物危险性评估技术——暴露边界比(margin of exposure,MOE)法[8],通过@risk软件对贝类中非法添加氯霉素可能引起的食品安全风险进行了评估。

    目前,MOE法在风险评估中应用广泛[9-10]。MOE是对人或实验动物产生很小但可测量作用的剂量,与估计的人的暴露量之间的比率。遗传毒性的致癌物的MOE值通过该类物质的基准剂量最低限值(lower confidence limit on the benchmark dose,BMDL) 与估计人群暴露量的比值计算得到,BMDL是描述遗传毒性致癌物危害特征的起点。MOE值越小,说明该物质对人类的致癌危险性越大,反之就越小。王君和吴永宁[8]运用MOE法评价了遗传毒性致癌物丙烯酰胺的危险性;Thompson等[11]综合了机械学和药代动力学信息,得出了六价铬的参考剂量和MOE值;Okauru等[12]运用MOE法比较了多环芳烃和热水对食管癌发病的风险。本研究采用MOE法评价氯霉素的暴露量,可以很好地衡量相关风险。

    @risk软件是一款基于蒙特卡罗模拟技术[13]加载到Microsoft Excel上进行风险评估和决策分析的专业软件[14],该软件为Excel增添了高级模型和风险分析功能,允许在建立模型时应用各种概率分布函数,对各种可能出现的结果进行模拟,得出构成风险的各种事件的发生概率,并能够以各种图表展示分析结果[13,15-16]

    本研究首次采用蒙特卡罗模拟技术,基于@risk 7.5.2版本,通过对检测到的市售贝类产品中氯霉素质量分数数据进行分布拟合,并模拟抽样10 000次[13,16-17],进而得到膳食暴露量的概率分布曲线及其中位数(P50)和第95百分位数(P95)的值,通过计算膳食摄入量和人群估计暴露量,对所得结果进行暴露边界比评价。属于定量的风险评估方法,得到的数据直观,可与其他类似风险进行横向比较。该方法可以较好地评估市售贝类产品中氯霉素的暴露风险,对该风险曾经发生、现在已基本消除的情况进行量化描述,以期说明通过加大执法力度进行风险管理可以消除该风险。

    • 2015—2017年,根据《水产品抽样规范》(GB/T 30891—2014)的抽样方法,在市场采集贝类样品,每个档口只采集1个贝类品种且只算作1个样品,样品取净肉400 g,共300个样品,包括东风螺(Babylonia areolata)、翡翠贻贝(Perna viridis)、文蛤(Meretrix meretrix)、菲律宾蛤仔(Ruditapes philippinarum)、杂色蛤仔(R. variegata)、波纹巴非蛤(Paphia undulata)等。具体采样情况见表1。所采样品包括蛤类、螺类、贻贝等,均为市场常见品种,能够一定程度上反映当地贝类的消费情况。

      年份
      year
      样品种类
      species
      数量
      quantity
      2015 文蛤 Meretrix meretrix 23
      菲律宾蛤仔 Ruditapes philippinarum 23
      杂色蛤仔 R. variegata 33
      波纹巴非蛤 Paphia undulata 10
      东风螺 Babylonia areolata 11
      小计 subtotal 100
      2016 文蛤 M. meretrix 26
      波纹巴非蛤 P. undulata 11
      菲律宾蛤仔 R. philippinarum 8
      翡翠贻贝 P. viridis 55
      小计 subtotal 100
      2017 文蛤 M. meretrix 15
      杂色蛤仔 R. variegata 6
      波纹巴非蛤 P. undulata 12
      翡翠贻贝 P. viridis 67
      小计 subtotal 100
      总计 total 300

      表 1  2015—2017年市售贝类产品采样情况

      Table 1.  Sample collection of commercially available shellfish in 2015−2017

    • 氯霉素(Dr.Ehrenstorfer,99.9%)、氯霉素-d5溶液(Dr.Ehrenstorfer,100.0 μg·mL–1)、正己烷(Sigma,≥95%)、乙酸乙酯(Sigma,≥99.7%)、甲醇(Fisher Scientific,99.9%)、氢氧化铵溶液(Macklin,25%~28%)、无水硫酸钠(广州化学试剂厂,≥99.0%)

    • API 3000-Agilent 1200 Series液相色谱-串联质谱仪、METTLER TOLEDO XS204电子天平、Thermo Scientific BIOFUGE STRATOS离心机、IKA MS3 basic涡旋振荡器、IKA T25 digital组织匀浆机、BUCHI R-215旋转蒸发仪。

    • 根据《可食动物肌肉、肝脏和水产品中氯霉素、甲砜霉素、氟苯尼考残留量的测定 液相色谱-串联质谱法》(GB/T 20756—2006)的相关规定进行检测。测定中采用空白实验、平行双样、质控样品测定、阳性复测等进行内部质量控制。

    • 采用标准曲线法得到供试液中氯霉素的体积分数,贝类产品中氯霉素的残留量X=cV/mc为供试液中氯霉素的体积分数,V为溶解残余物所用体积,m为贝类样品的质量。

    • 1) 贝类产品中氯霉素质量分数数据的分布拟合。采用@risk软件,将贝类产品中氯霉素质量分数的检测值进行分布拟合。参照世界卫生组织《食品中痕量污染物的可靠评价》[18]和美国环境保护署(USEPA)建议的数据处理方法[19-20],对于未检出样品按方法最低检出浓度的1/2进行处理取值,本研究中氯霉素的方法检出限为0.1 μg·kg–1,故对于未检出样品按照0.05 μg·kg–1进行处理取值。将得到的不同拟合曲线的拟合度运用卡方检验、安德森-达林检验、柯尔莫可洛夫-斯米洛夫检验这3种统计检验方法进行检验,并综合考虑3种方法的结果,最终确定最佳拟合分布[16-17,21-22]

      2) 膳食摄入量。根据GEMS/Food在2012年发布的数据,我国所在的G09区(东亚及东南亚地区),软体动物的平均摄入量为12.2 g·d–1[23],采用最保守的估计值10 g·d–1为贝类产品的膳食摄入量。本研究在软件中设定膳食摄入量为(10±3) g·d–1μ=10 g·d–1σ=1的随机变化正态分布函数。

      3) 每人每日膳食平均暴露量 [以下简称膳食暴露量(estimated dietary exposure,EXP)]。计算公式为:

      其中EXPD为日膳食暴露量,C为贝类产品中氯霉素的质量分数,ID为日膳食摄入量。根据以上公式,将相关参数(包括软件拟合的贝类产品中氯霉素质量分数的分布函数)输入@risk软件,随机从贝类产品中氯霉素质量分数分布中抽取数值计算膳食暴露量,每次模拟过程循环10 000次,得到膳食暴露量P50和P95的值。

    • 暴露边界比评估。采用CAC推荐的遗传毒性致癌物危险性评估技术——MOE法[8,10,24]对市售贝类产品中氯霉素残留进行风险特征描述。根据公式MOE=BMDL/EXP,结合动物及临床实验数据,将BMDL定为每千克体质量1 mg·d–1

      EXP计算公式为EXP=EXPD/mb,其中mb为标准人体质量,按照60 kg计算,膳食暴露量按照公式(1)得到的膳食暴露量的P50和P95取值。

      通过得到的MOE的P50和P95值进行评价,参照加拿大卫生部对于具有遗传毒性致癌物的MOE结果判定方法进行判定,即MOE值<5 000、5 000~500 000以及>500 000时分别表示被评估的危害物属于高、中、低危害程度[7]

    • 所有样品均采用国标方法检测,经仪器分析的数据见表2。其中2015年的检出率为33%,2016年的检出率为3%,2017年的全部100个样品均未检出氯霉素残留,故在本研究中不继续计算2017年氯霉素的膳食暴露量。

      年份
      year
      采集样品数
      quantity of collected samples
      阳性样品数
      quantity of positive samples
      检出值/μg·kg–1
      range of concentration
      2015 100 33 0.36~4 050
      2016 100 3 50.4~820
      2017 100 0
      总计 total 300 36 0.36~4 050

      表 2  2015—2017年市售贝类产品中氯霉素残留检测结果

      Table 2.  Result of determination of chloramphenicol residues in commercially available shellfish in 2015−2017

    • 根据2.1的检测结果,在软件中分别进行2015年、2016年数据的分布拟合,经3种检验综合评价,数据更符合正态分布,得到最优的拟合曲线,分别为:

      2015年,RiskNormal (121.43, 524.71, RiskTruncate(0, ))

      2016年,RiskNormal (9.412 5, 82.293, RiskTruncate(0, ))

    • 根据公式 (1),将得到的@risk相关参数(表3)输入软件中。

      描述
      description
      分布
      distribution
      2015年氯霉素残留量 chloramphenicol residue, 2015 RiskNormal (121.43, 524.71, RiskTruncate(0, ))
      2015年膳食摄入量 daily intake, 2015 RiskNormal (0.01, 1, RiskTruncate(0.007, 0.013))
      2015年膳食暴露量 dietary exposure, 2015 RiskOutput()+B1*B2
      2016年氯霉素残留量 chloramphenicol residue, 2016 RiskNormal (9.4125, 82.293, RiskTruncate(0, ))
      2016年膳食摄入量 daily intake, 2016 RiskNormal (0.01, 1, RiskTruncate(0.007, 0.013))
      2016年膳食暴露量 dietary exposure, 2016 RiskOutput()+B4*B5

      表 3  氯霉素的膳食暴露量分析@risk软件计算参数

      Table 3.  @risk parameter to calculate dietary exposure of chloramphenicol

      在@risk软件中进行蒙特卡罗模拟,每次模拟过程循环10 000次,得到的膳食暴露量的概率分布曲线见图1

      图  1  氯霉素的膳食暴露量概率分布曲线

      Figure 1.  Probability distribution curve of dietary exposure of chloramphenicol

      根据得到的氯霉素的膳食暴露量概率分布曲线,分别得到对应年份膳食暴露量的P50和P95 (表4)。

      年份
      year
      膳食暴露量/μg·kg–1 dietary exposure
      概率分布中位百分数
      P50
      概率分布第95百分位数
      P95
      2015 3.91 11.5
      2016 0.579 1.73
      2017

      表 4  氯霉素的膳食暴露量

      Table 4.  Dietary exposure of chloramphenicol

    • 本研究采用单一食品选择研究法,定量估计的分析方式,通过计算得到的暴露量以及MOE值见表5。2015年居民消费贝类产品所致氯霉素的平均暴露量为每千克体质量0.065 1 μg·d–1,计算得到的MOE值为15 361,介于5 000~500 000,按照加拿大卫生部的标准,属于中危害水平。高暴露量人群的暴露量为每千克体质量0.192 μg·d–1,计算得到的MOE值为5 208,介于5 000~500 000,按照加拿大卫生部的标准,属于中危害水平。2016年居民消费贝类产品所致氯霉素的平均暴露量为每千克体质量0.009 65 μg·d–1,计算得到的MOE值为103 627,介于5 000~500 000,按照加拿大卫生部的标准,属于中危害水平。高暴露量人群的暴露量为每千克体质量0.028 8 μg·d–1,计算得到的MOE值为34 722,介于5 000~500 000,按照加拿大卫生部的标准,属于中危害水平。2017年由于在市售贝类产品中未检出氯霉素,属于无危害水平。

      年份
      year
      人群估计暴露量/μg·d–1
      EXP
      暴露边界比
      MOE
      概率分布中位百分数
      P50
      概率分布第95百分位数
      P95
      概率分布中位百分数
      P50
      概率分布第95百分位数
      P95
      2015 0.065 1 0.192 15 361 5 208
      2016 0.009 65 0.028 8 103 627 34 722
      2017

      表 5  氯霉素的人群估计暴露量及暴露边界比

      Table 5.  Estimated dietary exposure and margin of exposure of chloramphenicol

    • 目前的致癌理论认为,遗传毒性致癌物是一类通过诱发体细胞基因突变从而激活致癌基因或者灭活抑癌基因的表达从而诱发癌变的致癌物,在体细胞基因中几个分子甚至一个分子的基因突变就有可能诱发癌症[8]。氯霉素的致癌性也有类似特征,给其危害的评估带来一定困难。对市售贝类产品中氯霉素残留进行暴露评估,是一种行之有效的方法。

      在致畸性研究中,氯霉素未表现出对大鼠、兔的致畸作用,但即使小剂量给药,均可引起高死胎率。几乎所有氯霉素致突变研究,均可得到阳性结果。氯霉素在离体细胞实验中可引发DNA断裂、染色体畸变并增加姐妹染色单体互换[25]。对于具有遗传毒性和致癌性的物质,传统假设它们没有阈值,并在任意暴露水平都会存在一定风险。故氯霉素无每日允许摄入量(acceptable daily intake,ADI)值,在世界粮农组织/世界卫生组织的报告中同样认为其无ADI值[3]

      BMDL的取值通常根据实验动物及临床实验数据得到,根据WHO的国际化学品安全规划(International Programme on Chemical Safety,IPCS)提出的“化学品危险性评估的剂量-反应分析建模的原则”[9],风险评估时可通过实验数据的拟合分析得到基准剂量(benchmark dose,BMD),进而得到BMDL值。由于氯霉素尚缺少BMDL值,需要根据各方面的实验数据综合考虑。研究表明,小鼠单次口服每千克体质量50 μg·d–1和100 μg·d–1的氯霉素可以引起染色体畸变[8]。成人或较大儿童应用氯霉素剂量大于每千克体质量100 μg·d–1,早产儿或新生儿大于每千克体质量25 μg·d–1可能引起灰婴综合征[2],氯霉素注射液的临床用量为成人每日0.5~1 g[6],按60 kg标准人体质量折算后为每千克体质量8~17 μg·d–1。以上剂量均为短期给药剂量,综合考虑长期食用的影响,本研究采用的BMDL为每千克体质量0.1 μg·d–1。该取值是否合理,仍需要更多数据进行评估。

    • 我国农业部235号公告明确规定氯霉素为禁用药物[3]。早在1969年,世界卫生组织(WHO)食品添加剂联合专家委员会(JECFA)和联合国粮农组织(FAO)第12届会议就建议禁止使用氯霉素[5,22]。在欧盟规定(EEC) No.2377/90以及以后的各版本限量标准中,氯霉素被列在不制定残留限量标准(禁用)的物质中[11]。氯霉素在各个国家均无最高残留限量值(maximum residue limit,MRL)。

      我国相关水产品检验检测标准中,由于采用的方法不同,氯霉素的检出限在0.1~0.3 μg·kg–1。欧盟委员会2003/181/EC决议的官方公报[26]以及全球水产养殖联盟(Global Aquaculture Alliance,GAA)制定的最佳水产养殖规范(Best Aquaculture Practice,BAP)中关于水产品中氯霉素残留的最低执行限量要求(minimum required performance limits,MRPL)为0.3 μg·kg–1

      本研究氯霉素的检出限为0.1 μg·kg–1,符合相关规定和检测要求;同时对于未检出的样品采用检出限的1/2进行处理取值符合相关指南的要求。

    • 相对其他海产品,我国消费者人群贝类的膳食摄入量数据在文献报道中较少涉及。根据GEMS/Food在2012年发布的数据,我国所在的G09区,软体动物(包括贝类和头足类)的平均摄入量为12.2 g·d–1,该区淡水鱼的平均摄入量为27.0 g·d–1,海水鱼的平均摄入量为1.29 g·d–1,甲壳类的平均摄入量为5.29 g·d–1[23]。《2002年中国居民营养与状况调查报告》中只统计了鱼类及虾蟹类的数据,数据显示我国居民平均每标准人日鱼类摄入量为24.8 g、虾蟹类的摄入量为4.8 g[27]。《广东省居民膳食营养与健康状况十年变化分析》(2002—2012)中只统计了鱼虾类的数据,每标准人日鱼虾类摄入量为56.8 g[28]。《中国居民营养与健康状况监测2010—2013年综合报告》的数据也只统计了鱼虾类的数据,城乡居民平均每标准人日鱼虾类摄入量为23.7 g,与2002年相比下降了5.9 g[29]。唐洪磊等[30]2006年的调查显示,广东省沿海城市,虾蟹贝类居民日均摄入量中值为24.8 g·d–1,均值为66.6 g·d–1。综合以上数据,本研究将10 g·d–1定为估计的我国居民贝类产品的膳食摄入量。

    • MOE分析技术是欧洲食品安全局在2005年FAO/WHO JECFA第64次会议上提出的,是评估遗传毒性致癌物危险性的有效方法。目前,虽然对于MOE值的分界值界定,国际社会尚没有一个公认值,不同国家及其机构的判定标准不一,但均可作为判定物质安全性的参考。加拿大卫生部对于MOE值分别界定了5 000和500 000两个分界值,分别界定出被评估危害物质危害程度的高、中、低[8]。英国癌症委员会(COC)的一个草案认为,MOE值达到10 000时可能已经足够安全。欧盟也认为MOE值达到10 000或以上,风险即较低[8,10,31]。本研究综合以上标准,采用较严格的加拿大卫生部标准,可以较好地区分不同年度市售贝类产品中氯霉素残留风险的严重程度。

    • 在2015年之前,市售贝类产品中人为违规添加氯霉素的情况均无人报道,其严重程度亦无从考量。自从2015年有媒体报道相关问题以来,政府部门便采取了一系列行动,以期能有效地控制该问题。本研究在2017年的采样检测时发现,市售贝类产品中氯霉素残留量已低于检测限,证明该问题已基本得到有效控制,对消费者的健康危害低。同时,监管部门仍应持续保持对此类风险问题的关注,以防死灰复燃。

参考文献 (31)

目录

    /

    返回文章
    返回